%0 Journal Article %T Highly Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 by Surface Coating with Li-Ti-O Nanoparticles for Lithium-Ion Batteries %J Analytical and Bioanalytical Electrochemistry %I Analytical and Bioanalytical Electrochemistry is an international scientific journal, which is published online every 3 months (since 2009), every 2 months (since 2011) and monthly (since 2018) by Center of Excellence in Electrochemistry, University of Tehran %Z - %A Pourfarzad, Hamed %A Karimi, Meysam %A Saremi, Mohammad %A Badrnezhad, Ramin %D 2022 %\ 07/01/2022 %V 14 %N 7 %P 696-714 %! Highly Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 by Surface Coating with Li-Ti-O Nanoparticles for Lithium-Ion Batteries %K Lithium-ion batteries %K NCM Cathode material %K Lithium titanium oxide layer, Surface Coating, Lithiation process %K Thermal annealing %R %X The Li-Ti-O-coated LiNi0.5Co0.2Mn0.3O2 (LTO@NCM) cathode materials are synthesized via an in situ co-precipitation method followed by the lithiation process and thermal annealing. The Li-Ti-O coating layer is designed to strongly adhere to the core-material with diffusion pathways for Li+ ions. Measurements and analysis of structure, morphology and electrochemical properties have been applied. X-ray diffraction patterns showed the existence and conversion of lithium titanium oxide (Li-Ti-O labeled as LTO). Electrochemical tests suggest that compared with pristine NCM, The LTO layer works both as an excellent Li ion conductive layer and as a protective coating layer against the attack of HF in the electrolyte, and remarkably improves the cycling performance at higher charged state and rate capability of the LTO@NCM composite material. 3.0 wt.% LTO-coated NCM (LTO3) material exhibited higher capacity retentions of 94.8% than that of the bare one (58.2%) and nickel-riched cathodes (90-91%) after 100 cycles at cut-off charge voltages of 4.3V at 1C rate.  %U https://www.abechem.com/article_253951_e848cbb8ac4be6cc19caa30d960792fe.pdf