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Abstract- A mathematical model of enzyme flow calorimetry for the monitoring of hysteresis 
behaviour of immobilized enzyme is developed. The model is based on diffusion equations 
containing a non linear term related to substrate inhibition kinetics of the enzymatic reaction. 
This paper presents an approximate analytical method (He’s Homotopy perturbation method) 
to solve the non-linear differential equations for spherical, cylindrical and planar particles. 
Closed and simple analytical expressions for substrate concentration have been derived for all 
possible values of parameters. These results are compared with numerical results and are 
found to be in good agreement. The obtained results are valid for the whole solution domain. 
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1. INTRODUCTION 

       Immobilization of enzyme is limitation of enzyme mobility achieved by different 

approaches. Some examples are chemical or physical immobilization on some surface 

(particles, plates etc.), chemical or physical immobilization inside particle, immobilization on 
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soluble polymers, cross-linking of enzymes by bi-functional reagents without any carrier and 

retardation of enzyme in membrane reaction . 

      There are two cases when enzyme activity is limited by diffusion of substrate to enzyme, 

such as reaction limitation by external diffusion and reaction limitation by internal diffusion.  

The second is discussed in this paper. 

      Enzyme reactions taking part in metabolic pathways, regulation processes, or in “in vitro” 

conditions often exhibit complicated dynamic behaviour in terms of the relation between the 

reaction rate and reaction. It can be studied by kinetic nonlinearities resulting from allosteric 

interactions, by autocatalytic mechanisms, or by combination of enzyme reaction with mass 

transfer conditions [1]. This can lead to one of typical effects, the so-called hysteresis, when a 

retardation of the response between reaction rate and concentration of substrate or other 

compounds is observed. When the system is repeatedly wiggled back and forth (the 

concentration is cycled up and down), a hysteresis loop can appear in the reaction rate 

concentration diagram.  

It has been recommended that hysteresis effects in biological systems are adequate to 

account for short-term memory [2] and the existence of hysteresis was described simply by 

coupling the enzyme kinetics and diffusion transport. It was also shown that in some cases 

the changes in conformation of enzyme molecule may give rise to hysteresis [3]. Kernevz and 

co workers [2] were developed a mathematical model to study hysteresis loop when bulk 

substrate concentration was progressively increased and decreased and it was explained by 

combination of the substrate inhibitory effect with diffusion limitation in the membrane. The 

numerical solution for spherical particles surrounded by a substrate solution with a constant 

concentration was studied by Malik & Stefuca [4]. However, to the best of our knowledge, 

till date no general analytical expressions of substrate concentrations in different part of 

particles with immobilized enzyme for spherical, cylindrical and planar particles have been 

reported. The purpose of this communication is to derive approximate analytical expression 

of concentrations for spherical, cylindrical and planar particles by solving the non-linear 

differential equations using He’s Homotopy perturbation method.  

 

2. EXPERIMENTAL 

2.1. Mathematical formulation of the problem and analysis 

       We consider the non-linear differential equation described by the concentration within 

the enzymatic layer at steady state conditions as follows [4]: 

 

 

 

         

 



Anal. Bioanal. Electrochem., Vol. 3, No. 5, 2011, 507 – 520                                                509 
 

 

0

     

 
2

2 




i

S
Sm

Sm
S

K

c
cK

cV
c                                                                                                    (1)   

                                                                                 
where sc  is the substrate concentration, mK  is the Michaelis constant, iK  is substrate 

inhibition constant, mV  is the maximum reaction rate.  Here 2 stands for Laplace operator. 

Eqn. (1) was combined with the boundary conditions 
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where 0Sc  is the substrate concentration on the particle surface. We make the non-linear 

PDE (Eq.1) dimensionless by defining the following parameters: 
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where c  is the dimensionless substrate concentration, x  is the dimensionless particle 
radial coordinate,  is the Thiele modulus ,   is the dimensionless kinetic parameter and m 

is the dimensionless substrate concentration on the particle surface. 

2.1.1. For spherical particle 

For this case the Eq.(1)  was reduces to the following dimensionless form                        
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whereas the boundary condition reduces to  
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2.1.2. For cylindrical particle 

For the case of cylindrical particle, the Eq.(1)  becomes in dimensionless form as follows: 
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  2.1.3. For planar particle 

For the case of planar particle, the Eq.(1)  becomes in dimensionless form as follows: 
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 The boundary conditions for cylindrical and planar particle are same as Eq. (6) and Eq. 

(7).  

 

3. ANALYTICAL SOLUTION OF SUBSTRATE CONCENTRATION USING 

HOMOTOPY PERTURBATION METHOD (HPM) 

Recently, many authors have applied the Homotopy perturbation method (HPM) to 

various problems and demonstrated the efficiency of the HPM for handling non-linear 

structures and solving various physics and engineering problems [5-8].  This method is a 

combination of homotopy in topology and classic perturbation techniques. Ji-Huan He used 

the HPM to solve the Lighthill equation [9], the Duffing equation [10] and the Blasius 

equation [11]. The idea has been used to solve non-linear boundary value problems [12], 

integral equations [13-15], Klein–Gordon and Sine–Gordon equations [16], Emden-Flower 

type equations [17] (Chowdhury, & Hashim, 2007) and many other problems. In this paper, 

the homotopy perturbation method [18-24] is applied and the obtained results show that the 

HPM is very effective and simple. 

3.1. For spherical particle 

We can obtain the substrate concentration by solving the Eq. (5) using Homotopy 

perturbation method (see Appendix A). 
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Eq. (10) is the new and simple analytical expression for the dimensionless substrate 
concentration as a function dimensionless distance x , dimensionless kinetic parameter   , 

Thiele modulus and dimensionless substrate concentration at particle surface m .  

3.2. For cylindrical particle 

We can obtain the dimensionless substrate concentration for the case of cylindrical 

particle by solving the Eq. (8): 
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Eq. (11) is the analytical expressions for the dimensionless substrate concentrations as a 

function dimensionless distance x for all possible values of parameters. The dimensionless 

substrate concentration for the case of cylindrical particle differ from the spherical particle 

only by a constant term in the denominator. The equations (10) and (11) are approximate 

expression of substrate concentration for spherical and cylindrical particle provided 
m 2  3   2mm    and m 2   2  2mm    

3.3. For planar particle 

We can obtain the dimensionless substrate concentration for the case of planar particle by 

solving the Eq. (9): 
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Eq. (12) is the analytical expressions for the dimensionless concentration as a function 

dimensionless distance x  for all small values of parameters.  

                                          

4. NUMERICAL SIMULATION                                               

 The diffusion equations (Eq. (5), (8) and (9)) for the boundary conditions (Eqs. (6)-(7)) 

are solved by numerical methods. The function pdex4 in Scilab software which is a function 

of solving the initial-boundary value problems for partial differential equation was used to 

solve these equations. The Scilab program is also given in APPENDIX B. The numerical 

results are also compared with our analytical results in Tables 1–2 for spherical and 
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cylindrical electrode. In all the cases the average relative error between analytical and 

numerical result is less than 3%.  

 
Table 1. Comparison of normalized substrate concentration c  for various values of    when 

particle) (spherical 20 , 800   m  

                     20                   50   100  

X Eq.(10) Numericl 

 

% deviation     

of  Eq. (10)      

Eq. (10) 

 

Numerical 

 

% deviation 

 

Eq. (10) 

 

 

Numerical 

of  Eq. (10) 

 

% deviation     

of  Eq. (10)       

0 792.15 796.00 0.4860 758.18 792.40 0.9195 798.35 799.20 0.1064 

0.2 792.47 796.10 0.4454 785.77 792.70 0.8819 798.41 799.20 0.0989 

0.4 793.41 796.70 0.4146 787.55 793.70 0.7809 798.61 799.30 0.0864 

0.6 794.98 797.50 0.3169 790.51 795.20 0.5932 798.94 799.50 0.0700 

0.8 797.17 798.60 0.1793 797.30 797.30 0.3322 799.40 799.70 0.0375 

1 800 800 0 800 800 0 800 800 0 

  Average deviation 0.3070 Average deviation 0.5846 Average deviation 0.0665 

 

 
Table 2. Comparison of normalized substrate concentration c  for various values of    when 

20 , 800   m  (cylindrical particle) 

 

X                 20                    50                100  

 

 

Eq. (11) 

 

Numerical 

 

% deviation 

of  Eq. (11) 

Eq. (11) 

 

Numerical % deviation 

of  Eq. (11) 

Eq. (11) 

 

Numerical % deviation       

of  Eq. (10)         

0 795.12 798.30 0.1106 788.23 796.00 0.9857 777.78 792.40 1.8797 

0.2 795.31 798.40 0.0993 788.70 796.10 0.9832 778.66 792.70 1.8031 

0.4 795.90 798.60 0.1005 790.11 796.70 0.8340 781.33 793.70 1.5832 

0.6 796.87 799.00 0.0878 792.47 797.50 .6347 785.77 795.20 1.2001 

0.8 798.24 799.40 0.0501 795.76 798.60 0.3568 792.00 797.30 0.6691 

1 800 800 0 800 800 0 800 800 0 

Average deviation 0.0747 Average deviation 0.6249 Average deviation 1.1892 
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5. RESULT AND   DISCUSSION 

Eq.(10)-(12) are the new and simple approximate analytical expressions of concentrations 
of substrate ),,( 2 mc   for spherical, cylindrical and planar particle respectively. The values 

of Thiele modulus   were in the range 20-400 with standard value 160 , kinetic parameter    

were in the range 10-300 with standard value 128  and substrate concentration on the particle 

surface m were in the range 100-1000 ( Malik & Stefuca 2002).  
The concentration of substrate c depends upon the three parameters  , m  and . The 

Thiele modulus can be varied by changing either the thickness of the enzyme layer or the 

amount of enzyme immobilized in the matrix. This parameter describes the relative 

importance of diffusion and reaction in the enzyme layer. When Thiele modulus  is small, 

the kinetics is the dominant resistance and the overall uptake of substrate is kinetically 

controlled. Under these conditions, the substrate concentration profile is essentially uniform. 

The overall kinetics is governed by the total amount of active enzyme. When is large, 

diffusion limitations are the principal determining factor . 

Fig. 1(a) and 2(a) represent the dimensionless steady state substrate concentration   for 

different values of dimensionless Thiele modulus  for spherical and cylindrical particle. 

From these figures, it is obvious that the substrate concentration reaches the maximum value 

m (Here m=800 ), when 1x . When Thiele modulus 20 , the substrate concentration 

profile is essentially uniform (refer Fig. 1(a) and 2 (a)).  

 

 

 
 

Fig. 1. Plot of normalized concentration profiles for substrate c versus the normalized 

distance x for the spherical particle. The concentrations are computed using Eq. (10) for (a)  
various values of     and some fixed values of    and  m   ( 800 m , 20  )  

b) various values of   and some fixed value of   and   ( 50 , 800 m ).  
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Fig. 2. Plot of normalized concentration profiles for substrate c vs. the normalized distance x 

for the cylindrical particle. The concentrations are computed using Eq. (11) for  
(a) various values of     and some fixed values of     and  m   ( 800 m , 20  )  

(b) various values of    and some fixed value of    and     ( 50 , 800 m ) 

 

Fig. 1(b) and 2(b) represent the spherical and cylindrical particle substrate concentrationc    
for different values of dimensionless kinetic parameter  . From these figures it is inferred 

that the concentration of the substrate c increases when kinetic parameter mi KK /  

decreases. The normalized three-dimensional substrate concentration profiles for spherical, 

cylindrical and planar particle are plotted in Fig. 3 where the data given by previous figures 

are verified. The dimensionless substrate concentrations for the spherical, cylindrical and 

planar particle are plotted in Fig. 4. From these Figures it is inferred that the dimensionless 

substrate concentration for spherical particle is greater than planar and cylindrical particle. 
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Fig. 3. The three-dimensional normalized substrate concentrations c for (a) spherical particle 
(Eq. (10)) when 500  , 10 (b)cylindrical particle(Eq.(11)) when 1000   , 50  

(c) planar particle (Eq. (12))  when 3000  m , 50  
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Fig. 4. Plot of the two-dimensional case diagram of the normalized substrate concentration c   

versus the normalized distance x  in the case of spherical, cylindrical, and planar particles. 

The normalized substrate concentrations were computed using Eq. (10), (11) and (12) when 
the parameters , 50 800m  and 300     

 

 
APPENDIX A 

Solution of the Eq. (5) using Homotopy perturbation method 

         In this Appendix, we indicate how Eq. (5) in this paper is derived. To find the solution 

of Eq. (10) ,we first construct a Homotopy as follows: 
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The boundary conditions are       
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 mcx         1                                                                                                                          (A3)             

The approximate solutions of (A1) is                  
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substituting Eq. (A4) into Eq.(A1) and comparing the coefficients of like powers of p  
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    The boundary conditions are  
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 0   c  when  1  x                                                                                                               (A10)            

 According to the HPM, we can conclude that 
..........10  ccc

                                                                                                             
(A11) 

 
Solving the Eq. (A5), and using the boundary conditions Eqs. (A6) - (A7) we get 

                                            mc 0                                                                                                                                 (A12) 

Solving the Eq. (A8), and using the boundary conditions Eqs. (A9) - (A10) we get 
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Adding Eq. (A12) and (A13), we get final results and it can be described in Eq. (10) in 

the text.    

 

APPENDIX B 

Scilab program to find the analytical solutions for Eq. (5): 

function pdex4 

m = 2; 

x = linspace(0,1); 

t=linspace(0,100000); 

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 

u1 = sol(:,:,1); 
figure 

plot(x,u1(end,:)) 

title('u1(x,t)') 

xlabel('Distance x') 

ylabel('u1(x,2)') 

%------------------------------------------------------------------ 

 

function [c,f,s] = pdex4pde(x,t,u,DuDx) 

c = 1;  

f = DuDx;  

q=0.1; 
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B=10; 

F=-q^2*B*u(1)/(B+B*u(1)+u(1)^2); 

s=F; 

% -------------------------------------------------------------- 

function u0 = pdex4ic(x);                                                     %create a initial conditions 

u0 = 1;  

% -------------------------------------------------------------- 

function [pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t)                       %create a boundary conditions 

pl = 0;  

ql = 1;  

pr = ur-1;  

qr = 0;                         

APPENDIX C 

Nomenclature 
 
Symbols 

PA                 Particle surface area   (m 2 ) 

c                   Dimensionless substrate concentration   

Sc                 Substrate concentration  (mole m 3 ) 

0Sc                Substrate concentration at particle surface  (mole m 3 ) 

eD                 Particle effective diffusion coefficient   (m 2  s 1 ) 

mK                Michaelis constant (mole m 3 ) 

iK                Substrate inhibition constant  (mole m 3 ) 

 r                  Particle radial coordinate  (m)  

PR                Particle diameter (m) 

obsv               Observed reaction rate (mole m 3  s 1 ) 

pv                 Particle volume (mole m 3  s 1 ) 

mV                Maximum reaction rate (mole m 3  s 1 ) 

pV                Particle volume   (m 3 ) 

x                  Dimensionless  particle radial coordinate 
i                  Dimensionless current   
m                 Dimensionless substrate concentration at particle surface. 

 

Greek symbols 
                Dimensionless kinetic parameter 

                Thiele modulus  
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6. CONCLUSION 

A mathematical model for an immobilized enzyme electrode has been described. In this 

present paper the particle balance equation have been formulated and solved under steady 

state conditions subject to defined boundary conditions. In this work, we obtained an 

analytical expression of the normalized substrate concentration for all possible values of 
dimensionless kinetic parameters    and the Thiele modulus  for spherical, cylindrical, and 

planar particle. The simple closed forms of analytical solutions have been proposed using 

Homotopy perturbation method. Furthermore, it gives good agreement with simulation 

results. 
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