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Abstract- Since the selectivity of an ion selective sensor is directly related to the stability 

constants of ion–ionophore complexes, we predicted the complexation stability (K) of cerium 

ions with different ionophores by the quantitative structure–property relationship model. 

Genetic algorithm (GA) feature selection approach was selected to choose the proper molecular 

descriptors which were then subjected to multiple linear regression (MLR) for prediction of 

the log K. The predictive ability of the built genetic algorithm-multiple linear regression (GA-

MLR) model was evaluated using Leave-one-out cross-validation, Leave-group-out cross-

validation, Y-randomization, and test set compounds. Statistical parameters of the model 

(R2
train=0.852, Q2

LOO= 0.813, and Q2
LGO=0.777) indicated the ability of the GA-MLR model to 

predict the response of ionophores in cerium-selective sensors based on complex stability 

constants. Also, the applicability domain of the model was analyzed by the Williams plot. 

Based on this study, some key features are identifiable to appraise the selectivity of cerium 

sensors that can be used to design new selectophores. 
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1. INTRODUCTION  

Ion Selective Electrodes (ISEs) are sensors that respond selectively to ions in the presence 

of others. The increasing use of ion sensors in the fields of agricultural, industrial, 

environmental, and medicinal analysis is stimulating analytical chemists to develop new 

sensors for the fast, accurate, reproducible, and selective determination of various species in a 

wide concentration range. The sensing part of any ion selective is definitely its ion-selective 

membrane or selectophore. The most important mechanism has been suggested for the selective 

recognition of different ions in these sensors based on the ion–dipole interactions between the 

target ion and an ionophore [1]. Therefore, by using the stability constant of complexes 

between the ionophore and ions (K), the selectivity of the ion selective electrode can be 

predicted.  

Although for the significant selectivity of a sensor, the complex stability constant must be 

a high enough value, but this value should not be so large as to prolong the response time of 

the sensor [1]. Based on previous studies, the proper range of logarithmic formation constant 

(log K) of the ion-selectophore complex in an ISE is usually about 4-7.  

Due to the importance of detection of rare earth elements in some biological samples and 

extensive cerium application in metallurgical and functional material areas, selective 

determination of cerium (III), by various method, have always received attention [2-5]. For the 

design of ion selective electrodes, several experiments should be run to synthesize, and then 

tested to detect the selectivity behavior of the newly designed ionophores, however, these 

experimental methods are often time-consuming and costly.  To overcome these restrictions, 

quantitative structure–activity relationships (QSPR) techniques emerged as a proper alternative 

to predict the selectivity behavior of ion selective sensors based on the stability constant of 

ionophores with target ions before any experimental works [6-10]. Quantitative structure-

property/activity relationships (QSPR/QSAR) method have been applied as a useful tool in 

different disciplines of science such as chemistry, physics, drug design, medicinal chemistry, 

and so forth over the recent decades [11-13].  

Based on the predictive QSPR model, the considered property can be obtained without any 

experimental efforts for synthesis and testing the novel compounds. Thus, the QSPR method 

can expedite the process of the development of new molecules with desired properties. One of 

the most important steps in constructing reliable QSAR/QSPR models is the descriptor 

selection that can demonstrate different aspects of the molecules by numbers.  

In this work, for the first time, a QSPR model has been established for the prediction of the 

selectivity behavior of ionophores toward cerium(III) in ion selective electrodes. For this 

purpose, the proper sets of descriptors representing the best-fitted models for the regression 

method were selected using the GA feature selection approach and subsequently subjected to 

the MLR approach to the construction of the linear model for predicting the stability constants 

of complexes between Ce3+ and ionophores. 
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2. METHODOLOGY  

2.1. Data set 

A data set including experimental stability constant values for the 1:1 complexes of 

Ce3+cation with 28 ionophore (CeL3+) was collected from the published papers by Ganjali et 

al. [14-41]. Since various parameters such as solvent, temperature, and measurement method 

affect the complex stability constants, we used only data in the same condition (conductometric 

method in acetonitrile solutions and temperature 25ºC). In our QSPR study, the response 

variable was expressed as the logarithmic scale of complex stability constants (log K), where 

K is defined as follows: 

                                       K= 
[𝐶𝑒𝐿3+]

[𝐶𝑒3+][𝐿]
                                              (1)    

The data set was randomly divided into two sub-sets: the training set containing 23 

molecules for model construction and the test set containing 5 molecules which were used to 

evaluate the model prediction ability. The chemical structures and the respective log K values 

for the compounds are listed in Table 1. 

 

Table 1. Chemical structure and experimental and predicted values of log K for cerium-

ionophore complexes by GA-MLR modela 

 

No. Structure Log K Ref. 

  Exp. Pred.  
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a The test set 
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2.2. Descriptor calculation 

The 2D chemical structures of the studied molecules were first drawn and saved with the 

HIN extension in the Hyperchem program [42]. The geometrical optimization was performed 

by semi-empirical AM1 method (Austin Model-1) with the adjusted root mean square gradient 

of 0.01 kcal mol-1 in MOPAC software. In the next step, these optimized structures fed into 

Dragon package [43] to calculate 18 categories of the molecular descriptors such as 

constitutional, topological, geometrical, WHIM, radial distribution function (RDF) and charge 

descriptors. 

After descriptors calculation, the descriptors with constant or almost constant values for all 

molecules were removed. Also, the descriptors having intercorrelated (correlation coefficients 

greater than 0.90) were detected and only one of them with the highest correlation with the 

response variable (log K) was considered in the development of the GA-MLR models. 

Therefore, the total number of 836 descriptors remained for the development of the linear 

models. 

 

2.3. Genetic algorithm analysis 

Since the predictive power of a model depends on the selected variables, one of the most 

determinative steps in QSPR analysis, is the selection step of proper descriptors.  In this study, 

the genetic algorithm technique was employed as a selection tool to select the most relevant 

variables for an objective function [44-46]. Each selected group of variables would be further 

evaluated to predict the properties values by their fitness. In this work, the fitness function used 

in the genetic algorithm method was the correlation coefficient of leave-one-out cross-

validation (Q2
LOO) [47].  

The GA-based variable selection and the other calculations were performed in the 

MATLAB 7.0 program [48].  

 

3. RESULT AND DISCUSSION  

After the classification of the data set (training and test sets), the genetic algorithm method 

was used to select the most relevant descriptors. The linear equation between the stability 

constants of complexes of Ce3+cation with studied molecules and the calculated descriptors 

was obtained by the MLR. The model constructed using the GA-MLR approach consisted of 

four molecular descriptors as being represented in Equation (2): 

Log K = 2.693 + (0.768) E1s + (0.546) nR=Cs +  

        (0.480) N-068 + (-0.439) B09[C-C]                                                                          (2) 

R2 = 0.852, R2
adj = 0.819, Q2

LOO= 0.813, Q2
LGO = 0.777, Q2

Boot = 0.766, R2
test =0.750, F = 25.99 
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where R2, 𝑅𝑎𝑑𝑗
2 , F, 𝑄𝐿𝑂𝑂

2 , 𝑄𝐿𝐺𝑂
2 , and 𝑄𝐵𝑜𝑜𝑡

2  are squared correlation coefficient, adjusted R2, 

Fisher F statistic, squared cross-validation coefficients for leave one out, leave group out, and 

bootstrapping, respectively.  

The obtained higher value for 𝑄𝐿𝑂𝑂
2  (0.813) indicates the reliability of obtained QSPR 

model. Cross-validation for the leave group out parameter indicates that the constructed model 

has a good external predictive power. The robustness of the proposed model and its predictive 

ability was also guaranteed by the high 𝑄𝐵𝑜𝑜𝑡
2  based on bootstrapping repeated 5000 times. The 

statistical parameters resulting from the GA–MLR method (high values of R2, R2
adj, and F) 

demonstrate the predictive capability of the proposed model.  Also, the high values of cross-

validation tests (𝑄𝐿𝑂𝑂
2 = 0.813, 𝑄𝐿𝐺𝑂

2  = 0.777 and 𝑄𝐵𝑜𝑜𝑡
2  = 0.766) and R2

test (0.750) confirm the 

high ability of the model in internal and external validation, respectively. 

The predicted values of logarithmic stability constants of Ce(III) complexes with different 

ionophores were listed in Table 1. The prediction plot consisting of predicted versus the 

experimental log k values has been represented in Figure 1. 

 

 

Fig. 1. The predicted versus the experimental log K values by the GA-MLR modeling 

 

According to equation 2, four descriptors appeared in this QSPR model consist of E1s, 

nR=Cs, N-068, and B09[C-C]. For the evaluation of the multi-collinearity for the selected 

descriptors, the variation inflation factors (VIF) was usually used [49] as below: 

𝑉𝐼𝐹 =
1

1−𝑟2
                                                                                                                         (3) 

where r is the correlation coefficient of multiple regressions between each variable and the 

other variables in the QSPR model. When the VIF values fall within the range 1–5, the 
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proposed model is acceptable and possesses enough predictive power. If the VIF value equals 

1, it indicates that there is no intercorrelation for each descriptor, whereas VIF values greater 

than 10 stand for the inappropriateness of the constructed model. The correlation coefficient 

and corresponding VIF values for selected descriptors based on GA–MLR have been 

represented in Table 2. The tabulated data in this table reveal the selected descriptors are 

independent and it is no multi-collinearity between pair descriptors. 

 

Table 2. The correlation coefficient of selected descriptors and corresponding VIF values 

based on GA-MLR 

 

 E1s nR=Cs N-068 B09[C-C] (VIF)a 

E1s 1 0 0 0 1 

nR=Cs 0.052 1 0 0 1 

N-068 0.090 0.0506 1 0 1 

B09[C-C] 0.002 0.025 0.035 1 1 

 

a Variation inflation factors 

 

According to equation 2, the selected variables are E1s, nR=Cs, N-068, and B09[C-C]. E1s 

(1st component accessibility directional WHIM index/weighted by atomic electrotopological 

states) is the first descriptor which is given in the model. This descriptor is a type of WHIM 

directional descriptor which is based on the statistical indices calculated on the projections of 

atoms along principal axes [50]. As it is clear from equation 2, the E1s plays positive effects 

on the log K value. Therefore, increasing the value of this descriptor1 will increase the log K 

value. The next descriptor is nR=Cs which describes the number of aliphatic secondary C(sp2). 

This descriptor reflects the degree of unsaturation of the molecule. The positive sign of nR=Cs 

indicates that by increasing the degree of unsaturation of the molecule (ionophore), the 

interaction between ionophore and cerium ion and consequently, stability constant value 

increases. The third descriptor is the number of aliphatic R3-N groups (N-068). Since this 

descriptor has a positive effect on the expected response, increasing the number of aliphatic 

R3-N groups leads to increase of stability constant values. B09[C-C] is sub-structural descriptor 

that describes the presence/absence of the C-C topological fragment in 09 distance. According 

to this model, the negative sign of this descriptor suggests that the complexation stability 

constant value is inversely related to this descriptor. 

The Williams plot (the plot of standardized residuals versus leverage values) was exploited 

to visualize the applicability domain. It can be used to obtain an immediate and simple 

graphical detection of both the response outliers (Y outliers) and the structurally influential 

chemicals (X outliers) of a QSPR model. The normal control values for Y outliers were set to 

http://www.sciencedirect.com/science/article/pii/S1319610314000209#b0280
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±3σ (± 3 standardized residual) and the normal control values for X outliers (h* or 3h) was 

calculated as 3p/n in this study, where n is the number of the calibration compound and p is the 

number of model variables plus one. The leverage (h) greater than the h* value suggested that 

the compound was very influential on the model. 

According to the Williams plot (Figure 2), compound 1 has the leverage (h) more than h* 

value of 0.652, therefore, it can be considered as a structural outlier, but the standard residuals 

for this compound are within ±3σ, and therefore, there are no outlier compounds with high 

standard residuals.  

 

 

Fig. 2. The William’s plot of the GA-MLR model for the training and test sets 

 

4. CONCLUSION 

A new reliable and accurate model based on GA-MLR analysis of the stability constant of 

cerium-ionophore complexes has been proposed, in the current report. The obtained results 

displayed that the GA-MLR model has a superior power to the expression of the relationship 

between the stability constant of cerium-ionophore complexes and the corresponding 

molecular descriptors. Since the response of the ISEs depends on the stability constants of ion–

ionophore complexes; the derived model could be used for the prediction of the selectivity of 

ionophores toward Ce3+ ion. The developed QSPR model can be used to predict the property 

of new ionophores. Also, The findings of this study may provide some insights for further 

design of novel selectophores for Ce(III) selective sensors. 
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