Determination of Chromium(III) and Magnesium(II) Ions in Pharmacological and Real Water Samples using Potentiometric Sensors based on Chitosan Schiff base Derivative as Green and Sensitive Ionophore


Department of Chemistry, Faculty of Sciences, Mashhad Branch, Islamic Azad University P.O. Box 91735-413, Mashhad, Islamic Republic of Iran


In the study, novel and sensitive carbon paste electrodes (CPEs) developed for the
potentiometric measurement of Cr(III) and Mg(II) ions in pharmacological and water samples.
CPEs as indicator electrodes were prepared from a mixture of four components, including
graphite powder, paraffin oil, multi-walled carbon nanotubes (MWCNTs), and a green
ionophore (Chitosan Schiff base derivative). Optimization of CPE composites indicated that
the critical factor in the preparation of the CPEs was chitosan Schiff base derivative which
selectivity proposed sensors highly depended on this factor. Effects of various parameters such
as pH, lifetime, response time, and selectivity of the potentiometric sensors to determine Cr(III)
and Mg(II) ions were also evaluated. The results indicated that the proposed sensors can be
applied in a relatively wide range of pH, long lifetimes, short response times, and excellent
selectivity for the analyte determination. The prepared sensors show Nernstian slopes of 19.53
and 29.83 mVdecade−1, and LODs of 5.6×10 8 and 4.4×10−9 with RSDs lower than 2.3% for
Cr(III) and Mg(II) ion determination, respectively. The calibration curves were linear in the
concentration ranges of 1.0×10-7-1.0×10-2 and 1.0×10-8-1.0×10-3 M, and R-square of 0.989 and
0.987 for the measurement of Cr(III) and Mg(II) ions, respectively. Besides, the sensors were
successfully utilized for the Cr(III) and Mg(II) ion measurement in real samples such as tablet
and tap water samples with suitable recovery higher than 97.6%.


[1] H. C. Lukaski, Effects of chromium(III) as a nutritional supplement, Elsevier (2019) pp. 61.
[2] J. Kim, K. Chung, and B.J. Johnson, Asian Austral. J. Anim. Sci. 33 ( 2020) 651.
[3] H. M. Mohamed, I. M. Sadik, A. Eltom, A. L. Osman, and A. M. Babker, Open J. Blood Diseases 9 (2019) 1.
[4] G. Derosa, M. D. Pascuzzo, A. D'angelo, and P. Maffioli, Diabetes Metab. Syndr. Obes. 12 (2019) 1861.
[5] E. A. Zayats, V. I. Timofeev, M. A. Kostromina, and R. S. Esipov, J. Biomol. Struct. Dynam. 37 (2019) 4460.
[6] P. Severino, L. Netti, M.V. Mariani, A. Maraone, A. D’Amato, R. Scarpati, F. Infusino, M. Pucci, C. Lavalle, and V. Maestrini, Cardiolog. Res. Practice 2019 (2019) 1.
[7] D. Srebro, S. Vuckovic, A. Milovanovic, J. Kosutic, K. Savic Vujovic, and M. Prostran, Current Medicin. Chem. 24 (2017) 424.
[8] A. A. Jamali, G. M. Jamali, A. A. Jamali, N. H. Jamali, B. M. Tanwani, M. A. Sohail,and A. A. Rajput, Open J. Prevent. Med. 8 (2018) 57.
[9] I. Jafar, and P. Satyanarayana, Int. J. Scient. Res. 8 (2019) 69.
[10] N. Rosique-Esteban, M. Guasch-Ferré, P. Hernández-Alonso, and J. Salas-Salvadó, Nutrients 10 (2018) 168.
[11] A. M. Al Alawi, S. W. Majoni, and H. Falhammar, Int. J. Endocrinol. 2018 (2018) 1.
[12] E. K. Crowley, C. M. Long-Smith, A. Murphy, E. Patterson, K. Murphy, D. M. O’Gorman, C. Stanton, and Y. M. Nolan, Marine Drugs 16 (2018) 216.
[13] M. Jafari, M. Di Napoli, S. Lattanzi, S. A. Mayer, S. Bachour, E. M. Bershad, R. Damani, Y. H. Datta, and A. A. Divani, J. Neurolog. Sci. 398 (2019) 39.
[14] H. Karimi-Maleh, C. T. Fakude, N. Mabuba, G. M. Peleyeju, and O. A. Arotiba, J. Coll. Interf. Sci. 554 (2019) 603.
[15] H. Karimi-Maleh, R. Farahmandfar, R. Hosseinpour, and J. Alizadeh, Chem. Papers 73 (2019) 2441.
[16] N. I. Khan, A. G. Maddaus, and E. Song, Biosensors 8 (2018) 7.
[17] R. Sha, N. Vishnu, and S. Badhulika, Sens. Actuators B 279 (2019) 53.
[18] A. González-López, P. I. Nanni, and M. T. F. Abedul, Staple-based paper electrochemical platform for quantitative analysis, Elsevier (2020) pp. 297.
[19] M. Thangamuthu, C. Santschi, and O. J. F. Martin, Biosensors 8 (2018) 34.
[20] Y. F. Bassuoni, E. S. Elzanfaly, H. A. M. Essam, and H. E. Zaazaa, Anal. Bioanal. Electrochem. 9 (2017) 65.
[21] I. Švancara, K. Vytřas, K. Kalcher, A. Walcarius, and J. Wang, Electroanalysis 21 (2009) 7.
[22] F. Xie, M. Yang, M. Jiang, X. J. Huang, W. Q. Liu, and P. H. Xie, TrAC Trend. Anal. Chem. (2019) 115624.
[23] M. Pan, Z. Yin, K. Liu, X. Du, H. Liu, and S. Wang, Nanomaterials 9 (2019) 1330.
[24] S. M. Ahsan, M. Thomas, K. K. Reddy, S. G. Sooraparaju, A. Asthana, and I. Bhatnagar, Int. J. Biol. Macromol. 110 (2018) 97.
[25] C. Fan, K. Li, Y. He, Y. Wang, X. Qian, and J. Jia, Sci. Total Environ. 627 (2018) 1396.
[26] M. C. Pellá, M. K. Lima-Tenório, E. T. Tenório-Neto, M. R. Guilherme, E. C. Muniz, and A. F. Rubira, Carbohydrate Polymers 196 (2018) 233.
[27] R. Priyadarshi, B. Kumar, F. Deeba, A. Kulshreshtha, and Y. S. Negi, Food Hydrocolloids 85 (2018) 158.
[28] Y. H. Lin, P. L. Kang, W. Xin, C. S. Yen, L. C. Hwang, C. J. Chen, J. T. Liu, and S. J. Chang, Computers in Industry 100 (2018) 1.
[29] T. M. Tamer, M. A. Hassan, A. M. Omer, W. M. Baset, M. E. Hassan, M. E. El-Shafeey, and M. S. M. Eldin, Process Biochem. 51 (2016) 1721.
[30] Z. Heidari, and M. Masrournia, J. Anal. Chem. 73 (2018) 824.
[31] N. Rajabi, M. Masrournia, and M. Abedi, Anal. Bioanal. Electrochem. 11 (2019) 1057.