Determination of Nicotinic Acid by Square Wave Voltammetry on a Carbon Paste Electrode: the Crucial Effect of Electrode Composition and Analytical Conditions


Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, Tehran, Iran P.O. Box 14155-6455, Tehran, Iran


The foregone studies have shown that nicotinic acid cannot produce noticeable reductive signal at carbon-based electrodes without appropriate modification of the electrode. This is an obvious reason that mercury is known as the main electrode material for electro-reduction of nicotinic acid. In this study, it has been shown that it is possible to create a remarkable reduction signal for NA at a carbon paste electrode (CPE) without any modification. This achieved by precisely adjustment of electroanalysis pH, appropriately choosing of binder kind, precisely controlling of the percentage of the binder in the electrode composition and utilizing of an effective voltammetric technique. A carbon paste electrode, containing 30% of n-eicosane (as binder) was shown to be the best electrode for NA determination. It was also shown that utilizing of square wave voltammetry in place of differential pulse voltammetry led to remarkably improvement in the analytical signal of NA. The pH value of the electroanalysis solution was shown to be a crucially effective factor for creating of NA signal and an optimum value of pH equal to 2.2 was chosen as the best pH condition. The optimized method exhibited a dynamic concentration linear range of 3.0×10−6-3.0×10−3 molL-1 with a detection limit of 5.63×10−7 molL-1. As an analytical application, the proposed sensor was successfully used for determination of nicotinic acid in the urine, serum and pharmaceutical samples.


[1] E. Capella-Peiro, L. Monferrer-Pons, M. C. Garcia-Alvarez-Coque, and J. Esteve-Romero, Anal. Chim. Acta 427 (2001) 93.
[2] K.I. Mawatari, F. Iinuma, and M. Watanabe, Anal. Sci. 7 (1991) 733.
[3] K. Shrivas, and D. K. Patel, Spectrochim. Acta 78 (2011) 253.
[4] M. T. Behme, Nutr Res. 53 (1995) 137.
[5] C. Watała, P. Kazmierczak, M. Dobaczewski, T. Przygodzki, M. Bartus, M. Łomnicka, E. M. Słominska, Z. Durackova, and S. Chłopicki, Pharmacol. Rep. 61 (2009) 86.
[6] L. H. Wang, Anal. Lett. 49 (2016) 1467.
[7] P. Zuo, J. Gao, J. Peng, J. Liu, M. Zhao, J. Zhao, P. Zuo, and H. He, Microchim. Acta 183 (2016) 329.
[8] J. Wu, H. Liu, and Z. Lin, Sensors 8 (2008) 7085.
[9] J. Stein, A. Hahn, and G. Rehner, J. Chromatogr. B 665 (1995) 71.
[10] P. K. Zarzycki, P. Kowalski, J. Nowakowska, and H. Lamparczyk, J. Chromatogr. A 709 (1995) 203.
[11] T. S. Agostini, and H. T. Godoy, J. High. Resolut. Chrom. Chrom. Comm. 20 (1997) 245.
[12] S. Casal, M. B. Oliveira, and M. A. Ferreira, J. Liq. Chromatogr. Related Technol. 21 (1998) 3187.
[13] M. Iwaki, E. Murakami, M. Kikuchi, A. Wada, T. Ogiso, Y. Oda, K. Kubo, and K. Kakehi, J. Chromatogr. B 716 (1998) 335.
[14] Y. Guo, SePu 21 (2003) 603.
[15] Y. Lu, C. Wu, and Z. Yuan, Fitoterapia 75 (2004) 267.
[16] P. Catz, W. Shinn, I. M. Kapetanovic, H. Kim, M. Kim, E. L. Jacobson, M. K. Jacobson, and C. E. Green, J. Chromatogr. B 829 (2005) 123.
[17] Y. Hsieh, and J. Chen, Mass Spectromet. 19 (2005) 3031.
[18] G. Saccani, E. Tanzi, S. Mallozzi, and S. Cavalli, Food Chem. 92 (2005) 373.
[19] D. N. Mallett, S. Dayal, G. J. Dear, and A. J. Pateman, J. Pharm. Biomed. Anal. 41 (2006) 510.
[20] C. H. Lin, H. L. Wu, and Y. L. Huang, Anal. Chim. Acta 581 (2007) 102.
[21] Z. Z. Cheng, Y. H. Wang, H. N. Xu, Z. H. Jia, H. Li, and R. L. Hu, J. Anal. Chem. 64 (2009) 1059.
[22] T. Paternoster, U. Vrhovsek, I. Pertot, B. Duffy, C. Gessler, and F. Mattivi, J. Agric. Food. Chem. 57 (2009) 10038.
[23] M. Szafarz, M. Lomnicka, M. Sternak, S. Chlopicki, and J. Szymura-Oleksiak, J. Chromatogr. B 878 (2010) 895.
[24] G. Mu, F. Luan, H. Liu, and Y. Gao, Food Anal. Methods 6 (2013) 191.
[25] W. H. Huang, K. Hu, L. Shao, Y. Chen, W. Zhang, H. H. Zhou, and Z. R. Tan, Anal. Methods 6 (2014) 8258
[26] H. Parham, B. Zargar, and F. Khoshnam, Food Anal. Methods 8 (2015) 2235.
[27] J. R. Santos, and A. O. S. S. Rangel, Food Chem, 187 (2015) 152.
[28] H.X. Liu, Y. Xu, H. Li, Y.M. Yan, K.Q. Ye, L.T. Wang, and H. Cao, J. Chem. Pharm. Res. 6 (2014) 1327.
[29] L. Campanella, R. Cocco, G. Favero, M. P. Sammartino, and M. Tomassetti, Anal. Chim. 92 (2002) 373.
[30] R. Rodriguez-Amaro, R. Perez, V. Lopez, and J. J. Ruiz, J. Electroanai. Chem 278 (1990) 307.
[31] X. Wang, N. Yang, and Q. Wan, Electrochim. Acta 52 (2006) 361.
[32] N. Yang, and X. Wang, Colloids Surf. B 61 (2008) 277.
[33] L. Yao, Y. Tang, and Z. Huang, Anal. Lett. 40 (2007) 677.
[34] S. Lü, Russ. J. Electrochem. 42 (2006) 163.
[35] I. Svancara, K. Vytras, K. Kalcher, A. Walcarius, and J. Wang, Electroanalysis 21 (2009) 7.
[36] T. Alizadeh, S. Mirzaee, and F. Rafiei, Int. J. Env. Anal. Chem. 97 (2017) 1282.
[37] M. Akhoundian, and T. Alizadeh, and M. R. F. Rafiei, Biosen. Bioelectron. 111 (2018) 27.
[38] T. Alizadeh, and S. Nayeri, Anal. Bioanal. Electrochem 11 (2019) 349.
[39] T. Alizadeh, and S. Amjadi, New J. Chem. 41 (2017) 4493.
[40] S. amjadi, and T. Alizadeh, Anal. Bioanal. Electrochem. 9 (2017) 126.

Volume 12, Issue 2
February 2020
Pages 250-262
  • Receive Date: 10 November 2019
  • Revise Date: 02 February 2020
  • Accept Date: 04 February 2020