Electrochemical Oxidation and Molecular Docking Studies of Leaves Extract of Lemon Verbena and Flowers Extract of Echium Amoenum: Green Antidotes for Treatment of Barbiturate Poisoning

Authors

1 Department of Chemistry, University of Nahavand, Nahavand, Iran

2 Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Electrochemical oxidation of leaves extract of lemon verbena and the flowers extract of echium amoenum have been studied in the absence and presence of barbituric acid and 1,3 dimethyl barbituric acidin aqueous solutions and biological pH, using cyclic voltammetry method. The results showed that the electrochemically generated compounds in leaves extract of lemon verbena and the flowers extract of echium amoenum, participate in the chemical reaction with barbituric acid and 1,3 dimethyl barbituric acid. Based on our results, leaves extractof lemon verbena and the flowers extract of echium amoenum have a high antioxidant activity in comparison with galic acid, salicylic acid and quercetin as standard antioxidants and simultaneous can be useful for the treatment of barbiturate poisoning before starting clinical treatments. The antioxidant activity of luteoline and verbascoside (as the main and natural compounds in lemon verbena) against some of the reactive oxygen species (ROS) generation enzymes, Cytochrome P450 3A4 (4D75), Myeloperoxidase (1DNW) and Thyosine (3nm8) has been performed through molecular docking studies. The results indicated that these natural compounds bound exclusively to the binding site of ROS generation enzymes and has a remarkable role in suppressing the destructive effects of oxidative stress in the biological system of the human body.

Keywords


[1] A. J. McBay, N. Eng. J. Med. 273 (1965) 38.
[2] K. Shashi, and B. C. Nandini, Indian J. Anaesth. 46 (2002) 480.
[3] A.A. Izzo, Med. Princ. Pract. 21 (2012) 404.
[4] R. Mactier, M. Laliberte´, J. Mardini, M. Ghannoum, V. Lavergne, S. Gosselin, R. S. Hoffman, and T. D. Nolin, Am. J. Kidney Dis. 64 (2014) 347 .
[5] S. Chatterjee, Z. Niaz, S. Gautam, S. Adhikari, P. S. Variyar, and A. Sharma, Food Chem, 101 (2007) 515.
[6] A. Simić, D. Manojlović, D. Šegan, and M. Todorović, Molecules 12 (2007) 2327.
[7] Duh Pin-Der, J. Am. Oil Chem. Soc. 75 (1998) 455.
[8] R. Hermann, and O. von Richter. Planta Med. 78 (2012) 1458.
[9] B. J. Gurley, E.K. Fifer, and Z. Gardner. Planta Med. 78 (2012) 1490.
[10] T. CheCh, Z. J. Wang, M. S. S. Chow, and C. W. K. Lam, Molecules 18 (2013) 5125.
[11] A. Amani, and D. Nematollahi. J. Iran. Chem. Soc. 15 (2018) 2669.
[12] J. Bard, and L. R. Faulkner, Electrochemical Methods, 2nd ed.; Wiley: New York ( 2001 ) .
[13] O. Trott, and A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. Comput. Chem. 31 (2010) 455.
[14] A. Felgines, D. Fraisse, C. Besson, M. P. Vasson, and O. Texier, British J. Nutrition 111 (2014) 1773.
[15] A. Liu, S. Zhang, L. Huang, Y. Cao, H. Yao, W. Chen, and X. Lin, Chem. Pharm. Bull. 56 (2008) 745 .
[16] E. D. S. Gil1, T. A. Enache, and A. M. Oliveira-Brett, Comb. Chem. High Throughput Screen. 16 (2013) 92.
[17] J. Sochor, J. Dobes, O. Krystofova, B. Ruttkay-Nedecky, P. Babula, M. Pohanka, T. Jurikova, O. Zitka, V. Adam, B. Klejdus, and R. Kizek, Int. J. Electrochem. Sci, 8 (2013) 8464.
[18] P. A. Kilmartin, Antioxid. Redox Signal. 3 (2001) 941.