A Sensitive Simultaneous Determination of Uric Acid, Norepinephrine and Indomethacin using a Cadmium Sulfide Nanoparticles/Multi-Walled Carbon Nanotubes Modified Gold Electrode

Authors

1 Department of Chemistry, Faculty of Science, Arak University, Arak, I.R. Iran

2 Institute of Nanosciences & Nanotechnology, Arak University, Arak, I.R. Iran

Abstract

In this study a novel method was developed to fabricate cadmium sulfide nanoparticles/multiwalled carbon nanotubes composite modified gold electrode (CdSNPs/MWCNTS/AuE) to measure trace amounts of norepinephrine(NE), indomethacin (IND), and uric acid (UA) simultaneously. Electrochemical investigations were carried out using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamprometery (CA) methods. Using DPV method under optimum condition, the NE anodic peak current represented a linear relationship in the two concentration ranges of 0.3 to 100.0 μM and 100.0 to 500.0 μM. For UA, the corresponding anodic peak current showed linear ranges from 0.5 to 100.0 μM and from 100.0 to 350.0 μM, and IND the corresponding linear range was between 2.0 to 80.0 μM, respectively. Detection limits have been calculated equal to 0.16 μM for NE, 0.09 μM for UA, and 0.46 μM for IND, respectively. The modified electrode has been applied for the determination of NE, UA and IND in human urine and blood serum with satisfactory results.

Keywords


[1] B. G. Katzung, and Basic & Clinical Pharmacology, New York 9th ed. (2004).
[2] M. Zhu, X. Huang, J. Li, and H. Shen, Anal. Chim. Acta 357 (1997) 261.
[3] M. Warnhoff, J. Chromatogr. B 307 (1984) 271.
[4] S. Wei, G. Song, and J.M. Lin, J. Chromatogr. A 1098 (2005) 166.
[5] V. Renzini, C. A. Brunori, and C. Valori, Clin. Chim. Acta 30 (1970) 587.
[6] M. Mazloum-Ardakani, M. A. Sheikh-Mohseni, and B. F. Mirjalili, Ionics 20 (2014) 431.
[7] H. Beitollahi, A. Mohadesi, and S. Khalilizadeh-Mahani, Ionics 18 (2012) 703.
[8] B. Habibi, and M. H. Pournaghi-Azar, Electrochim. Acta, 55 (2010) 5492.
[9] P. Guissou, G. Cuisinaud, and J. Sassard, J. Chromatogr. B 277 (1983) 368.
[10] R. Krishna, K. W. Riggs, M. P. R. Walker, E. Kwan, and D.W. Rurak, J. Chromatogr. B 674 (1995) 65.
[11] A. K. Singh, Y. Jang, U. Mishra and K. Granley, J. Chromatogr. B 568 (1991) 351.
[12] J. K. Cooper, G. McKay, E. M. Hawes, and K. K. Midha, J. Chromatogr B 233 (1982) 289.
[13] M. E. Abdel-Hamid, L. Novotny, and H. Hamza, J. Pharmaceut. Biomed. 24 (2001) 587.
[14] W. Ren, H. Q. Luo and N. B. Li, Biosens. Bioelectron. 21 (2006) 1086.
[15] K. Inoue, T. Namiki, Y. Iwasaki, Y. Yoshimura, and H. Nakazawa, J. Chromatogr. B 785 (2003) 57.
[16] P. Schrenkhammer, and O. S. Wolfbeis, Biosens. Bioelectron. 24 (2008) 994.
[17] X. Dai, X. Fang, C. Zhang, R. Xu, and B. Xu, J. Chromatogr. B, 857 (2007) 287.
[18] U. D. Uysal, E. M. Oncu-Kaya, and M. Tunçel, Chromatographia 71 (2010) 653.
[19] V. K. Gupta, R. Jain, K. Radhapyari, N. Jadon, and S. Agarwal, Anal. Biochem. 408 (2011) 179.
[20] T. O. Morgan, A. Anderson, and D. Bertman, Am. J. Hyperten. 13 (2000) 1161.
[21] C. Hu, and S. Hu, J. Sens. 40 (2009) 1.
[22] M. Afrasiabi, S. Kianipour, A. Babaei, A. A. Nasimi, and M. Shabanian, J. Saudi Chem. Soc. 20 (2013) S480.
[23] M. Baghayeri, A. Sedrpoushan, A. Mohammadi, and M. Heidari, Ionics 23 (2017) 1553.
[24] A. Babaei, A. Yousefi, M. Afrasiabi, and M. Shabanian, J. Electroanal. Chem. 740 (2015) 28.
[25] P. M. Ajayan, and O. Z. Zhou, Top. Appl. Physics 80 (2001) 391.
[26] D. Vairavapandian, P. Vichchulada, and M. D. Lay, Anal. Chim. Acta 626 (2008) 119.
[27] K. Gong, F. Du, Z. Xia, M. Durstock, and L. Dai, Science 323 (2009) 760.
[28] M. Satyanarayana, K. Yugender Goud, K. Koteshwara Reddy, and K. Vengatajalabathy Gobi, Electrocatalysis 8 (2017) 214.
[29] A. Babaei, and M. Afrasiabi, Ionics 21 (2015) 1731.
[30] H. Yang, C. Huang, X. Li, R. Shi, and K. Zhang, Mater. Chem. Phys. 90 (2005) 155.
[31] Y. Liu, J. Zhang, and D. Li, Chirality, 31 (2019) 174.
[32] J. Hiie, T. Dedova, V. Valdna, and K. Muska, Thin Solid Films. 511 (2006) 443.
[33] A. A. Yadav, M. A. Barote, and E. U. Masumdar, Sol. State Sci. 12 (2010) 1173.
[34] D. M. Khan.; F. Z. Omar, and P. Brien, J. Cryst. Growth 96 (1989) 989.
[35] M. Selvam, S. R. Srither, K. Saminathan, and V. Rajendran, J. Ionics 9 (2014) 1622.
[36] S. Z. Abdulwahab, Y. Lahewil, U. AI-Douri, and N.M. Ahmed, Procedia Eng. 53 (2013) 217.
[37] A. Singh, D. Kumar, P. K. Khanna, B. C. Joshi, and M. Kumar, Appl. Surf. Sci. 39 (2011) 1881.
[38] C. H. Ashok, K. V. Rao, C. H. Chakra, and V. Rajendar, Int. J. Pure Appl. Sci. Technol. 8 (2014) 23.
[39] R. M. Nirmal, K. Pandian, and K. Sivakumar, Appl. Surf. Sci. 257 (2011) 2745.
[40] C. Suryanarayana, and M. G. Norton, Microsc. Micoanal. 4 (1998) 513.
[41] A. J. Bard, and L. R. Faulkner, Electrochemical Methods. Fundamentals and Applications, New York, Wiley, 2nd ed. (2001).
[42] M. Amal Raj, and S. Abraham John, Anal. Methods 6 (2014) 2181.
[43] M. M. Islam Khan, M. J. Haque, and K. Kim, J. Electroanal. Chem. 700 (2013) 54.
[44] S. R. Sataraddi, S. M. Patil, A. M. Bagoji, V. P. Pattar, S. T. Nandibewoor, ISRN Anal. Chem. 2014 (2014) 1.