Development of Carbon Paste Electrode/EDTA/Polymer Sensor for Heavy Metals Detection

Authors

Molecular Electrochemistry and Inorganic Materials Team, Beni Mellal Faculty of Science and Technology, Sultan Moulay Slimane University, Marocco

Abstract

The method used to immobilize the polymer on the Disodium ethylenediamine tetraacetate (EDTA) modified carbon paste electrode (CPE/EDTA) has proved its effectiveness for the detection and chelation of heavy metals in aqueous solution. Its complex formation with Pb(II) was examined by square wave voltammetry and cyclic voltammetry. CPE/EDTA electrodes are predisposed to the phenomenon of dissolution due to several factors, such as pH, we thought to cover these electrodes with a selective polymer synthesized (9% of the polysulfone and 91% of the polyacrylonitrile) for remedy this problem. It was found that the CPE/EDTA/polymer electrode shows a better performance than the carbon paste electrode modified by EDTA molecular (CPE/EDTA). The polymer used protects the surface of the electrode while preserving its activity. These modified electrodes developed in this study allow simple, rapid and inexpensive identifi1cation of lead ions with 1.08×10-9mol/l of detection limit. The morphological study of polymer surface was examined by Atomic Force Microscopy (AFM).

Keywords


[1] Q.W. Yang, W.S. Shu, J.W. Qiu, H.B. Wang, and C.Y. Lan, Environ Int. 30 (2004) 883.
[2] L. de A. Pereira, I.G. de Amorim, and J.B.B. da Silva, Talanta 64 (2004) 395.
[3] Y. Sato, M. Kang, T. Kamei, and Y. Magara, Water Res. 36 (2002) 3371.
[4] S. Barlow, and D. O’Hare, Chem. Rev. 97 (1997) 637.
[5] P. Nguyen, P. Gómez-Elipe, and L. Manners, Chem. Rev. 99 (1999) 1515.
[6] G. Owen, M. Bandi, J.A. Howell, S.J. Churchouse, and J. Membr. Sci. 102 (1995) 77.
[7] N. Ueda, H. Tsutsumi, M. Yamada, R. Takeuchi, and K. Kido, Mar. Pollut. Bull. 28 (1994) 676.
[8] S. Lamari Abdelmajid, s. Touzara, S. Eddine El Qouatli, and A. Chtaini, MSAIJ. 12 (2015) 152.
[9] S. Touzara, R. Najih, and A. Chtaini, J. Biosens. Bioelectron. 6 (2015) 2155.
[10] Z. Mourhat, S. Touzara, R. Maallah, M. Mbarki, and A. Chtaini, J. Biosens. Bioelectron. 8 (2017) 2155.
[11] S. Touzara, R. Najih, and A. Chtaini, J. Biosens. Bioelectron. 5 (2016) 137.
[12] M. Smaini, R. Maallah, S. Touzara, C. Laghlimi, S. el Qouatli, and A. Chtaini, Biol. Syst. 6 (2017) 2329.
[13] N.T.R. Lauriane, J. Bouali, R. Najih, M. Khouili, and A. Hafid, Pharm. Anal. Acta. 05 (2014) 2153.
[14] N.T.R. Lauriane, R. Najih, and A. Chtaini, Pharm. Anal. Acta. 5 (2014) 2153.
[15] J. el mastour, S.E. el Qouatli, and A. Chtaini, Sens. Biosensing Res. 21 (2018) 17.
[16] S. Touzara, A. Amlil, H. Saâdane, C. Laghlimi, and A. Chtaini, J. Mater. Sci. Eng. 8 (2019) 2169.
[17] C. Laghlimi, M.A. Smaini, R. Maallah, S. Touzara, S.E.I.Q. Ouatli, and A. Chtaini, J. Biosens. Bioelectron. 8 (2017) 2155.
[18] V. Mishra, and R. Kumar, J. Appl. Polym. Sci. 128 (2013) 3295.
[19] Y.H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, and D. Wu, Carbon 41 (2003) 1057.
[20] M.I. Kandah, and J.L. Meunier, J. Hazard. Mater. 146 (2007) 283.
[21] S. Touzara, C. Laghlimi, E. Cheikh OuldS’id, M. Chamekh, A. Kheribech, and A. Chtaini, J. Biomol. Res. Ther. 9 (2019) 180.
[22] G.O. Buica, C. Bucher, J.C. Moutet, G. Royal, E. Saint-Aman, and E.M. Ungureanu, Electroanalysis 21 (2009) 77.
[23] M. Heitzmann, C. Bucher, J.C. Moutet, E. Pereira, B.L. Rivas, G. Royal, and E. Saint-Aman, Electrochim. Acta. 52 (2007) 3082.
[24] C.O. M’Bareck, Q.T. Nguyen, S. Alexandre, and I. Zimmerlin, J. Membr. Sci. 278 (2006) 10.