Platinum Nanoparticle Electrode Modified Iodine using Cyclic Voltammetry and Chronoamperometry for Determination of Ascorbic Acid

Author

The University of Jordan, Department of Chemistry, Amman - 11942, Jordan

Abstract

This study investigated the oxidation of ascorbic acid (Vitamin C) using a platinum nanoparticle electrode coated with an iodine monolayer, called a modified electrode. The electrode were grown using the cyclic voltammetry technique and the electrochemical measurements were taken using the cyclic voltammetry and chronoamperometric technique. In the case of platinum nanoparticle electrode modified iodine by and ascorbic acid, the analyzed the anodic peak current and anodic maximum potential is done. The also examined the effect of the concentration of ascorbic acid and the effect of the scan rate on anodic top parameters. The results show that the anodic current peak increases and that the anodic peak potentials increase in comparison to the clean electrode to a negative value. Anodic peak current increases with scan rate of ascorbic acid increases. As the ascorbic acid concentration and scan rate increase, the anodic peak potential changes to more positive values. The SEM and EDX demonstrate some fascinating characteristics of the uniform particle distribution, growth and self-assembly of the iodin-modified platinum nanoparticle. The sensor was ascorbic acid with a sensitivity of 0.215 μA/μM-cm2 and a detection limit of 0.01 μM (R2=0.994).The results show that the iodine-modified platinum nanoparticle electrode developed can be used in food sampling to voltammetric determine Vitamin C.

Keywords


[1] S. Z. Mohammadi, H. Beitollahi, Z. Dehghan, and R. Hosseinzadeh, Applied Organometallic Chem. 12 (2018) e4551.
[2] S. Liu, D. Gaopeng, Z. Yanping, and H. Xunguang, Analytical Letters 42 (2009) 2914.
[3] M. Nithya, J. Biosens. Bioelectron. 6 (2015) 1.
[4] H. Dai, W. Xiaoping, W. Youmei, Z. Weichao, and C. Guonan, Electrochim. Acta 53 (2008) 5113.
[5] A. Ensafi, M. Taei, T. Khayamian, and A. Arabzadeh. Sens. Actuators B 147 (2010) 213.
[6] M. Nejati-Yazdinejad, Int. J. Food Sci. Tech. 42 (2007) 1402.
[7] D. Ortiz-Aguayo, M. Bonet-San-Emeterio, and V. Manel, Sensors 19 (2019) 3286.
[8] A. Levent, and G. Önal. Turkish J. Chem. 42 (2018) 460.
[9] A. Pardakhty, S. Ahmadzadeh, S. Avazpour, and V. Gupta. J. Mol. Liq. 216 (2016) 387.
[10] C. Cofan, and R. Ciprian, Sensors 8 (2008) 3952.
[11] J. Arteaga, M. Ruiz-Montoya, A. Palma, G. Alonso-Garrido, S. Pintado, and J. Rodríguez-Mellado, Molecules 17 (2012) 5126.
[12] M. Chen, X. Ma, and X. Li, Turkish J. Chem. 37 (2013) 959.
[13] J. Guerreiro, L. Rafaela, H. Ayman, H. Kamel, and F. Goreti, Food Chemistry 120 (2010) 934.
[14] A. Ambrosi, A. Morrin, R. Malcolm, R. Smyth, and J. Anthony, Anal. Chim. Acta 609 (2008) 37.
[15] I. Sálusová, K. Cinková, B. Brtková, M. Vojs, M. Marton, and Ľ. Švorc, Acta Chimica Slovaca 10 (2017) 21.
[16] M. Ye, M. Zhao, B. Cai, W. Wang, Z. Ye, and J. Huang, Chem. Commun. 50 (2014) 11135.
[17] K. Balwinder, T. Pandiyan, B. Satpati, and R. Srivastava, Colloids and Surfaces B: Biointerfaces 111 (2013) 97.
[18] L. Chang-Seuk, S. Yu, and T. Kim, Nanomaterials 8 (2017) 17.
[19] Y. Yang, and W. Li, Biosens. Bioelectron. 56 (2014) 300.
[20] B. Ganesh, J. Anal. Bioanal. Tech. 6 (2015) 10.
[21] Y. Norazriena, Graphene-Based Electrochemical Sensors for Biomolecules, Elsevier, Firs edition (2019) pp. 155.
[22] Z. Wang, Q. Xu, J. Wang, Q. Yang, J. Yu, and Y. Zhao, Microchim. Acta 165 (2009) 387.
[23] X. Wang, H. Watanabe, and S. Uchiyama, Talanta 74 (2008) 1681.
[24] A. Altweiq, I. Jawad, T. Aljalab, O. Abu-alhaj, M. Muwalla, and A. Alkhawaldeh, Eurasian J. Anal. Chem. 14 (2019).
[25] M. Chao, and M. Chen, Food Anal. Methods 7 (2014) 1729.
[26] B. Hadi, J. Raoof, and R. Hosseinzadeh, Electroanalysis 23 (2011) 1934.
[27] A. Alkhawaldeh, Int. J. Multidisciplinary Sci. Advanced Tech. 1 (2020) 81.
[28] B. Kaushik, and S. Jasimuddin. RSC Advances 6 (2016) 99983.
[29] P. S. Ganesh, and B.e. Swamy, J. Electroanal. Chem. 752 (2015) 17.
[30] J. B. Raoof, R. Ojani, H. Beitollahi, and R. Hossienzadeh, Electroanalysis 18 (2006) 1193.
[31] N. Acha, C. Elosúa, J. Corres, and F. Arregui, Sensors 19 (2019) 599.
[32] L. Neng, K. Zhou-Zhou, C. Xing-Zhu, and Y. Yu-Fei, Journal of Inorganic Materials (2019) 388. https://doi.org/10.15541/jim20190388.
[33] M. Hourani, and A. Alkhawaldeh, Int. J. Electrochem. Sci. 11 (2016) 3555.
[34] A. Alkhawaldeh, M. Krishan A. Altwaiq, and R. Dabaibeh, Eurasian J. Anal. Chem. 15 (2020) emEJAC-00362.
[35] X. Lin, Q. Zhuang, J. Chen, S. Zhang, and Y. Zheng, Sens. Actuators B 125 (2007) 240.
[36] J. Song, L. Xu, R. Xing, Q. Li, C. Zhou, D. Liu, and H. Song, Scientific Reports 4 (2014).
[37] K. Byung-Kwon, J. Lee, J. Park, and J. Kwak, J. Electroanal. Chem. 708 (2013) 7.
[38] P. Biyas, H. Kuttoth, and N. Sandhyarani, Microchim. Acta 186 (2019) 672.