Corrosion Behavior of Ti/TiN Multilayer Nanostructured Coatings Applied on AISI 316L by Arc-PVD Method in the Simulated Body Fluid

Authors

Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695, Iran

Abstract

In this investigation, Ti/TiN nanolayer and TiN single layer coatings were coated on substrate of AISI 316L stainless steel by applying physical vapor deposition (PVD) using the type of cathodic arc evaporation (CAE). The evaluation of microstructure were carried out using x-ray diffraction (XRD), nanoindentation, atomic force microscopy (AFM) as well as scanning electron microscopy (SEM). Polarization and impedance tests were utilized to study the coatings corrosion behavior in the simulated body solution (SBF) in different immersion times. Utilizing CAE technique, high density and adhesion Ti/TiN nanolayer and TiN single layer coatings were successfully made. The corrosion results showed that Ti/TiN nanolayer coating had an exceptionally high polarization resistance compared to 316L substrate and TiN single layer coating. Furthermore, the corrosion results indicated the desired corrosion behavior in the nanolayer coating towards the single layer within the SBF, as a result of the distinct layers presence resulting in a barrier against penetration of the corrosive media.

Keywords


[1] Q. Chen, and G. A. Thouas, Mater. Sci. Eng. R 87 (2015) 1.
[2] Y. Okazaki, and E. Gotoh, Biomaterials 26 (2005) 11.
[3] A. A. Zierold, Arch. Surg. 9 (1924) 365.
[4] N. S. Manam, W. S. W. Harun, D. N. A. Shri, S. A. C. Ghani, T. Kurniawan, M. H. Ismail, and M. H. I. Ibrahim, J. Alloys Compd. 701 (2017) 698.
[5] C. Leyens, M. Peters, eds., Titanium and Titanium Alloys, Wiley (2003).
[6] H. K. Koerten, J. J. M. Onderwater, E. W. A. Koerten, F. P. Bernoski, and R. G. H. H. Nelissen, J. Biomed. Mater. Res. 54 (2001) 591.
[7] H. Elmkhah, A. Fattah-alhosseini, K. Babaei, A. Abdollah-Zadeh, and F. Mahboubi, J. Asian Ceram. Soc. 8 (2020) 72.
[8] B. Podgornik, B. Zajec, N. Bay, and J. Vižintin, Wear 270 (2011) 850.
[9] H. Elmkhah, A. Abdollah-zadeh, F. Mahboubi, A. R. S. Rouhaghdam, and A. Fattah-alhosseini, J. Alloys Compd. 711 (2017) 530.
[10] H. Elmkhah, F. Attarzadeh, A. Fattah-alhosseini, and K. H. Kim, J. Alloys Compd. 735 (2018) 422.
[11] N. S. Mansoor, A. Fattah-alhosseini, H. Elmkhah, and A. Shishehian, Mater. Res. Express. 6 (2020) 126433.
[12] S. A. Naghibi, K. Raeissi, and M. H. Fathi, Mater. Chem. Phys. 148 (2014) 614.
[13] A. Fattah-alhosseini, H. Elmkhah, G. Ansari, F. Attarzadeh, and O. Imantalab, J. Alloys Compd. 739 (2018) 918.
[14] A. Fattah-alhosseini, H. Elmkhah, K. Babaei, O. Imantalab, H. R. Ghomi, and M. K. Keshavarz, Mater. Res. Express. 5 (2018) 106401.
[15] D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Elsevier,
2010.
[16] S. Arango, A. Peláez-Vargas, and C. García, Coatings 3 (2012) 1.
[17] P. Mohamadian Samim, A. Fattah-alhosseini, H. Elmkhah, and O. Imantalab, Mater. Res. Express. 6 (2019) 126426.
[18] Z. Andalibi Fazela, H. Elmkhaha, A. Fattah-alhosseinia, K. Babaeia and M. Meghdari, J. Asian Ceram. Soc. 8 (2020) 510.
[19] A. Gilewicz, P. Chmielewska, D. Murzynski, E. Dobruchowska, and B. Warcholinski, Surf. Coatings Technol. 299 (2016) 7.
[20] K. Jokar, H. Elmkhah, A. Fattah-alhosseini, K. Babaei, and A. Zolriasatein, Mater. Res. Express. 6 (2019) 116426.
[21] G. M. Pharr, D. L. Callahan, S. D. McAdams, T. Y. Tsui, S. Anders, A. Anders, J. W. Ager, I. G. Brown, C. S. Bhatia, S. R. P. Silva, and J. Robertson, Appl. Phys. Lett. 68 (1996) 779
[22] A. H. Tan, and Y. C. Cheng, Diam. Relat. Mater. 17 (2008) 36
[23] N. Sahib Mansoor, A. Fattah-alhosseini, A. Shishehian, and H. Elmkahah, Mater. Res. Express. 6 (2019) 056421.
[24] F. R. Attarzadeh, H. Elmkhah, and A. Fattah-alhosseini, Metall. Mater. Trans. B. 48 (2017) 227.
[25] A. Fattah-alhosseini, H. Elmkhah, and F. R. Attarzadeh, J. Mater. Eng. Perform. 26 (2017) 1792.
[26] L. Chenglong, Y. Dazhi, L. Guoqiang, and Q. Min, Mater. Lett. 59 (2005) 3813.
[27] N. D. Nam, M. J. Kim, D. S. Jo, J. G. Kim, and D. H. Yoon, Thin Solid Films. 545 (2013) 380.
[28] T. Kokubo, and H. Takadama, Biomaterials 27 (2006) 2907.
[29] A. K. Krella, Surf. Coatings Technol. 228 (2013) 115.
[30] B. Subramanian, R. Ananthakumar, and M. Jayachandran, Surf. Coatings Technol. 205 (2011) 3485.
[31] C. Liu, G. Lin, D. Yang, and M. Qi, Surf. Coatings Technol. 200 (2006) 4011.
[32] Q. Yang, D. Y. Seo, and L. R. Zhao, Surf. Coatings Technol. 177 (2004) 204.
[33] H. A. Jehn, Surf. Coatings Technol. 125 (2000) 212.
[34] C. Liu, P. K. Chu, G. Lin, and D. Yang, Corros. Sci. 49 (2007) 3783.
[35] W. Yanfeng, L. Zhengxian, W. Haonan, D. Jihong, and Z. Changwei, Rare Met. Mater. Eng. 46 (2017) 1219.
[36] Q. Wang, F. Zhou, C. Wang, M.-F. Yuen, M. Wang, T. Qian, M. Matsumoto, and J. Yan, Mater. Chem. Phys. 158 (2015) 74.
[37] W. Cui, G. Qin, J. Duan, and H. Wang, Mater. Sci. Eng. C 71 (2017) 520.
[38] B. Juttner, IEEE Trans. Plasma Sci. 15 (1987) 474.
[39] R. Ananthakumar, B. Subramanian, A. Kobayashi, and M. Jayachandran, Ceram. Int.
38 (2012) 477.
[40] H. C. Barshilia, M. S. Prakash, A. Poojari, and K. S. Rajam, Thin Solid Films. 460 (2004) 133.
[41] L. A. S. Ries, D. S. Azambuja, and I. J. R. Baumvol, Surf. Coatings Technol. 89 (1997) 114.
[42] R. A. Antunes, A. C. D. Rodas, N. B. Lima, O. Z. Higa, and I. Costa, Surf. Coatings Technol. 205 (2010) 2074.
[43] R. Ali, M. Sebastiani, and E. Bemporad, Mater. Des. 75 (2015) 47.
[44] N. Sahib Mansoor, A. Fattah-alhosseini, A. Shishehian, and H. Elmkhah, Anal. Bioanal. Electrochem. 11 (2019) 304.
[45] P. Mohamadian Samim, A. Fattah-alhosseini, H. Elmkhah, and O. Imantalab, J. Asian Ceram. Soc. 8 (2020) 460.
[46] N. Sahib Mansoor, A. Fattah-alhosseini, H. Elmkhah, and A. Shishehian, J. Asian Ceram. Soc. (2020) https://doi.org/10.1080/21870764.2020.1776915
[47] Z. W. Zhao, B. K. Tay, L. Huang, S. P. Lau, and J. X. Gao, Opt. Mater. (Amst). 27 (2004) 465.