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Abstract- This study presents a pioneering application of a novel quantitative structure-

property relationship (QSPR) model to predict the selectivity coefficients of a cation-selective 

electrode. Specifically, the selectivity coefficients of a Lanthanum (La(III)) membrane sensor 

utilizing 8-amino-N-(2-hydroxybenzylidene) naphthylamine (AIP) as the sensing ligand were 

efficiently estimated and predicted. To establish the QSPR model, calculated molecular 

descriptors were employed, considering the limitation of cation descriptors. A new strategy 

was introduced for descriptor calculation by optimizing the structure of Mn+-AIP and utilizing 

density functional theory (DFT) with the B3LYP functional and SBKJC basis set. Genetic 

algorithm (GA) and stepwise techniques were employed for descriptor selection, with the most 

significant descriptors identified. Following variable selection, multiple linear regression 

(MLR) was employed to construct linear QSPR models. Comparative analysis revealed that 

the GA-MLR modeling approach exhibited superior performance compared to the stepwise-

MLR method. Furthermore, the predictions generated by the GA-MLR model demonstrated 

excellent agreement with the experimental values. The proposed strategy outlined in this study 

has the potential to be extended to other QSPR investigations involving cation-selective 

electrodes. These findings contribute to the advancement of predictive modeling in the field of 

cation-selective sensors and offer valuable insights for future research in this area. 
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1. INTRODUCTION  

Ion-selective electrodes (ISEs) are electrochemical sensors that exhibit a specific response 

to the presence of ionic species [1-4]. The selectivity of these sensors is recognized as one of 

their most crucial characteristics, as it plays a significant role in determining the feasibility of 

obtaining accurate measurements in the target sample [5-8]. This attribute holds particular 

importance in clinical applications of ion-selective electrodes, where maintaining a low emf 

deviation (error) is essential for whole blood or serum measurements, with a maximum 

allowable deviation of 0.1 mV [9]. The response behavior of ion-selective membrane 

electrodes in the presence of interfering ions is commonly characterized and quantified using 

selectivity coefficients, denoted as ksel [10-12]. These coefficients provide a means to describe 

the influence of interfering ions on the overall response of the electrodes. 

As laboratory-based determination of selectivity coefficients can be a time-consuming and 

costly process, there arises a need for the application of theoretical methods to efficiently and 

economically estimate the selectivity coefficients of chemicals. 

Quantitative structure-property relationships (QSPRs) investigations have emerged as a 

significant field in chemometrics, biological chemistry, medicinal chemistry, and various other 

disciplines [13-18]. The QSPR methodology has proven effective in predicting diverse 

chemical and physical properties, including selectivity coefficients (ksel) of electrochemical 

sensors. To date, only a limited number of attempts have been made to develop QSPR models 

specifically focused on selectivity coefficients of ion-selective electrodes [9-12]. However, 

despite the abundance of cation sensors, studies on the prediction of selectivity coefficients for 

cation-selective electrodes are very little reported due to the limited descriptors available for 

cations. 

To achieve improved prediction outcomes, the effective implementation of the QSPR 

method necessitates careful selection of input descriptor sets. These descriptors are associated 

with a diverse range of physicochemical properties and biological activities [19]. Currently, 

quantum chemically derived descriptors are widely utilized as the predominant descriptors in 

QSPR investigations [20,21]. 

The availability of semi-empirical, ab initio, and Density Functional Theory (DFT) 

methods has significantly advanced our ability to acquire comprehensive information about 

chemical compounds, including their geometry and charge distribution. These quantum 

mechanical methods are founded on the Schrödinger equation [22], which describes molecular 

systems by means of their respective molecular wave functions. However, solving the 

Schrödinger equation exactly for molecular systems is often impractical, necessitating 

approximate solutions. Ab initio structure methods typically treat the potential energy operator 

as time-independent and focus solely on solving the spatial wave function. These calculations 

can be performed at the Hartree-Fock level of approximation [23] or utilize various post-
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Hartree-Fock theories such as configuration-interaction, multiconfiguration, and self-

consistent field methods. 

The B3LYP density functional is widely employed in quantum chemistry studies, primarily 

owing to its inclusion in commonly used quantum chemistry software packages and the 

extensive experience of the computational chemistry community with this functional. 

Consequently, there exists a substantial body of knowledge regarding the accuracy that can be 

attained through calculations employing the B3LYP functional. However, it is well-known that 

the B3LYP functional, along with several other density functional, lacks the capability to 

adequately describe London dispersion interactions [24]. 

For all calculations in this study, we employed the parallel version of Gamess software. It 

should be noted that commonly used general basis sets like 3-21G, 6-31G, LANL2MB, and 

others are not suitable for lanthanide ions. Instead, a specialized basis set such as SBKJC must 

be utilized. Performing quantum mechanical calculations with the SBKJC basis set is a 

challenging and time-consuming task. Therefore, to overcome these computational demands, 

all calculations were executed using a supercomputer. 

In the field of QSPRs, Multiple Linear Regression (MLR) is a commonly employed 

modeling method [25-27]. MLR models provide a straightforward and easily interpretable 

approach compared to other modeling techniques. In this study, the variable selection in the 

MLR method was carried out using the genetic algorithm selection method (GA). GA is a 

stochastic optimization method that incorporates the principles of Darwinian evolution, 

employing fitness criteria and genetic functions such as crossover and mutation [28]. However, 

due to the inherent limitation of GA-MLR as a "black box" approach, the stepwise-MLR 

technique was also employed for modeling purposes. The results obtained from both GA-MLR 

and stepwise-MLR were compared to assess their respective performances. 

 The objective of this study is to develop a novel QSPR model for the prediction of selectivity 

coefficients in Lanthanum-selective electrodes. Given the limited number of descriptors 

available for cations, a new approach was employed to calculate these descriptors. 

 

2. EXPERIMENTAL SECTION 

2.1. Electrode preparation 

The preparation of the viscous solution utilized for membrane formation involved the 

combination of 30 mg of powdered PVC, 61 mg of NOPE, 2 mg of KTpCIPB additive, and 7 

mg of AIP in 5 ml of THF. The resulting mixture, characterized by its low viscosity, was 

thoroughly mixed and transferred into a 2 cm diameter glass dish. Subsequently, the solvent 

was gradually evaporated to yield a concentrated oily mixture. The membrane was then formed 

on the tip of a Pyrex tube with an outer diameter of 3-5 mm. The tube was dipped into the 

mixture for approximately 10 seconds, allowing for the formation of a transparent membrane 

with a thickness of around 0.3 mm. After removing the tube and allowing sufficient time for 
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drying at room temperature for approximately 10 hours, the tube was filled with an internal 

filling solution containing 1.0×10-3 M LaCl3. To condition the electrode, it was immersed in a 

1.0×10-3 M La(NO3)3 solution for 24 hours. An internal reference electrode coated with 

silver/silver chloride was employed for the electrode setup. The electrode under consideration 

was prepared following the methodology reported by Ganjali et al. serving as a reference for 

the experimental procedure [29]. 

 

2.2. Data set 

The selectivity coefficients for a total of 30 cations were obtained using the Matched 

Potential Method (MPM) and served as the dataset for this study (see Table 1). Among the 

cations listed in Table 1 (1 to 19), the experimental data for 19 cations were previously reported 

by Ganjali et al. [29]. The selectivity coefficients for the remaining 11 cations were determined 

as part of this research, following the methodology described in reference [29]. Notably, each 

selectivity coefficient was calculated as the average of five measurements. Subsequently, the 

dataset was randomly partitioned into two distinct groups: a training set, encompassing 24 

cations, and a prediction set, comprising 6 cations (refer to Table 1). 

 

Table 1. Data set 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

             t:test 

 

No. Cation Log K MPM

BA,  No. Cation Log K MPM

BA,  

1 Na+ -5.7 16 Nd3+ -3.9 

2 K+ -5.6 17 Dy3+ -4.1 

3 Hg 2+ -6.0 18 Eu 3+ -4.0 

4 Cu 2+ -5.2 19 Lu3+ -4.4 

5 Co 2+ -5.9 20 Ba2+ -4.8 

6 Mg2+ -5.3 21 Cs+ -6.5 

7 Ca2+ -5.2 22 t Li+ -6.1 

8 Ni 2+ -5.4 23 Rb+ -6.3 

9 t Zn 2+ -5.6 24 Sr2+ -4.9 

10 t Pb2+ -4.8 25 Tb3+ -3.5 

11 Yb 3+   -3.2 26 t Er3+ -3.4 

12 t Gd 3+ -3.9 27 Ho3+ -3.5 

13 Ce 3+ -3.6 28 t Fe3+ -3.3 

14 Pr 3+ -2.6 29 Tm3+ -3.4 

15 
Sm 3+ -4.2 

30 
Cd2+ -4.3 
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2.3. Descriptor generation 

2.3.1. Computational calculation 

Since, selectivity coefficient value of a cation depends on the amount of interaction 

between AIP and cation; we investigated effect of each cation on molecular structure of AIP 

and calculated structural descriptor of AIP in presence cation. For this purpose, structure of 

uncomplexed AIP and complex of Mn+-AIP were optimized and finally, the structural changes 

of AIP as the result of interaction with cations as descriptors were calculated. Therefore, 

chemical structures of 30 studies molecules were drawn with the Hyperchem software then 

primal precise optimization is done with MM+ (molecular mechanics) in presence of cations 

and saved with the HIN extension. Quantum chemical descriptors and optimized geometries 

were obtained after optimizing by Gamess (Firefly) using DFT/B3LYP with the SBKJC basis 

set. 

To investigate the influence of each cation on the molecular structure of AIP and calculate 

the corresponding structural descriptors, it was recognized that the selectivity coefficient of a 

cation is contingent upon the extent of interaction between AIP and the cation. To this end, 

both the uncomplexed AIP structure and the Mn+-AIP complex were subjected to optimization 

procedures. This facilitated the calculation of structural changes in AIP resulting from cation 

interaction, which were subsequently employed as descriptors. The chemical structures of the 

30 molecules of interest were constructed using Hyperchem software. Subsequently, initial 

optimization was performed employing MM+ (molecular mechanics) in the presence of 

cations, and the resulting structures were saved with the HIN extension. Quantum chemical 

descriptors and optimized geometries were then obtained by applying Gamess (Firefly) 

optimization using the DFT/B3LYP method with the SBKJC basis set. 

To investigate the influence of each cation on the molecular structure of AIP and calculate 

the corresponding structural descriptors, it was recognized that the selectivity coefficient of a 

cation is contingent upon the extent of interaction between AIP and the cation. To this end, 

both the uncomplexed AIP structure and the Mn+-AIP complex were subjected to optimization 

procedures. This facilitated the calculation of structural changes in AIP resulting from cation 

interaction, which were subsequently employed as descriptors. The chemical structures of the 

30 molecules of interest were constructed using Hyperchem software. Subsequently, initial 

optimization was performed employing MM+ (molecular mechanics) in the presence of 

cations, and the resulting structures were saved with the HIN extension. Quantum chemical 

descriptors and optimized geometries were then obtained by applying Gamess (Firefly) 

optimization using the DFT/B3LYP method with the SBKJC basis set. 

2.3.2. Quantum chemical descriptors 

Due to the similarity among the compounds in the dataset, the relative differences in 

descriptor values are relatively small. Thus, it is crucial to determine the descriptors with high 



Anal. Bioanal. Electrochem., Vol. 15, No. 12, 2023, 1031-1045                                                       1036 

precision. To achieve this, quantum chemical calculations were chosen for descriptor 

calculation. Quantum chemical calculations provide valuable insights into the impact of 

molecular geometry and conformations on chemical systems. The optimized 3D geometry of 

the molecules, obtained through quantum chemical calculations, can offer useful information 

in this regard. Figures 1 and 2 depict the optimized structures of both the uncomplexed AIP 

and its Cu2+-AIP complex, while Table 2 presents the quantum chemical descriptors calculated 

using Gamess [30]. 

 

Table 2. List of quantum chemical descriptors calculated by Gamess software 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The optimized structure of AIP 

No. Definition Notation 

1 Mulliken charges of all atoms MC 

2 Mulliken charges of cations MCC 

3 One electron energy OEE 

4 Two electron energy TEE 

5 Nuclear repulsion energy NRE 

6 Nucleus-electron potential energy NEPE 

7 Total potential energy TPE 

8 Total kinetic energy TKE 

9 Virial ratio(V/T) V 

10 Dipol moment DM 

11 Polarizability P 

12 Highest occupied molecular orbital HOMO 

13 Lowest unoccupied molecular orbital LUMO 

14 Total energy TE 
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Figure 2. The optimized structure of Cu2+-AIP 

 

2.3.3. Dragon descriptors 

The molecular descriptor calculation software, DRAGON, is recognized for its advanced 

capabilities. It encompasses a wide range of descriptor types, including constitutional, 

topological, autocorrelation, geometrical descriptors, as well as 3D-MORSE, RDF descriptors, 

WHIM, GETAWAY descriptors, functional groups, and atom-centered fragments. In this 

study, version 3 of the Dragon package [31] was employed to compute these descriptors. The 

output files generated by the Gamess software for each compound were utilized as input for 

the Dragon program to calculate the descriptors. Following the calculation, descriptors that 

exhibited constant or nearly constant values across all molecules were identified and 

subsequently eliminated. Furthermore, the generated descriptors were used to construct a 

matrix, with the number of rows corresponding to the number of molecules and the number of 

columns representing the descriptors. To mitigate redundancy within the matrix, the 

correlations among descriptors as well as their correlations with the selectivity coefficient were 

examined. In cases where the correlation coefficient (R) exceeded 0.90 between descriptor 

pairs, the descriptor with the higher correlation with the selectivity coefficient (Ks) was 

retained, while the other descriptor was removed from the matrix. Following these steps, a total 

of 370 descriptors were retained, while the remaining descriptors were eliminated. 

 

2.4. MLR analysis 

The obtained structural descriptors and experimental property values were subjected to 

analysis using GA-MLR (Genetic Algorithm-Multiple Linear Regression) and stepwise-MLR 

(Stepwise Multiple Linear Regression) techniques. To address the issue of information overlap 

among descriptors and to minimize the number of descriptors required in the regression 

equation, the concept of non-redundant descriptors was employed in this study. While GA-

MLR serves as a black-box model, stepwise multiple linear regression was also employed to 

select the most relevant descriptors and construct the MLR model. By combining these 
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approaches, we aimed to identify the key structural features that are most strongly correlated 

with the logarithm selectivity coefficient values of the compounds. Through the utilization of 

the MLR method, we obtained an equation that establishes a relationship between the structural 

characteristics and the logarithm selectivity coefficient values of the compound. 

Log ksel = a0 + a1x1 +· · ·+anxn      (1) 

The calculations, including GA-MLR, were conducted using MATLAB software (Version 

7.0, MathWorks, Inc.) as part of this research endeavor. 

 

3. RESULTS AND DISCUSSION 

This study utilized a dataset comprising 30 cations, as presented in Table 1. Quantum 

chemical calculations were performed to determine various quantum chemical parameters, 

including geometrical parameters, atomic charges, and dipole moments of Mn+-AIP, as 

outlined in Table 2. To identify the most significant descriptors, a combination of the genetic 

algorithm and stepwise multiple regression techniques was employed. The QSPR (Quantitative 

Structure-Property Relationship) models, which establish relationships between the selectivity 

coefficients as dependent variables and the quantum chemical descriptors as independent 

variables, are depicted in Table 3. 

To assess the individual contributions of each descriptor to the selectivity coefficient, the 

mean effect (ME) percentage for each parameter was determined using the following 

calculation: 

MEj
J% =

∑ Dij×aj
n
i=1

∑ |∑ Dij×aj
n
i=1 |

J
j=1

× 100    (2) 

Table 3. Selected MLR models based on quantum chemical descriptors 

 

 Descriptor Notation Coefficient Mean effect (%) t-Test 

 

 

GA-MLRa 

Mulliken charge of cation MCC 1.734 18.78 8.006 

Mulliken charge of C14 14C 5.807 0.01 3.412 

Mulliken charge of H34 34H 15.317 42.25 6.976 

Mulliken charge of H35 35H 14.837 38.96 3.203 

constant  -16.551  -8.933 

 

Stepwise-

MLRb 

Mulliken charge of cation MCC 1.096 17.19 5.096 

Mulliken charge of C13 13C -1.299 13.27 -2.065 

Mulliken charge of H34 34H 17.049 69.54 6.367 

constant  -11.949  -12.931 

a Statistics of the model: n = 24, R2 = 0.832, Q2=0.751, S.E. = 0.442 and F = 23.63 
b Statistics of the model: n = 24, R2 = 0.816, Q2=0.726, S.E. = 0.507 and F = 29.63 
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By referring to Equation 2, it becomes possible to acquire the ME (Mean Effect) value of 

a specific descriptor and comprehend its impact on the selectivity coefficients (ksel values), 

whether it is proportional or inversely proportional, without taking into account the effects of 

other descriptors included in the model. The ME% values of the descriptors can be found in 

Table 3. 

Based on the findings presented in Table 3, the model includes four descriptors: Mulliken 

charges of cation (MCC), C14, H34, and H35. Mulliken charges are derived from Mulliken 

population analysis, which offers a method for estimating partial atomic charges through 

computational chemistry approaches, particularly those based on the linear combination of 

atomic orbitals molecular orbital method. 

The proposed model indicates a direct relationship between the selectivity coefficient and 

all of the descriptors. Notably, H34 and H35 exhibit the highest mean effect values of +42.25 

and +38.96, respectively, making them the most influential factors on the selectivity 

coefficients. The positive sign denotes a direct effect on the expected response. An increase in 

the values of H34 and H35 corresponds to an increase in interference. Since these descriptors 

represent the Mulliken charges of H34 and H35, higher Mulliken charges for H34 and H35 

result in a greater interfering effect. 

Furthermore, as the interference of a cation increases, there is a corresponding increase in 

the interaction between the cation and AIP, as well as in the partial charge values of N21, H34, 

and H35. 

The MCC descriptor exhibits a positive impact on the anticipated response. The favorable 

influence of Mulliken charges of cations on the selectivity coefficient underscores the notion 

that higher Mulliken charges of interfering cations lead to increased interactions between the 

cation and AIP, consequently intensifying the interfering effect on the electrode response. As 

for the 14C descriptor (ME% = 0.01), its effect on selectivity coefficients is minimal. 

Nevertheless, incorporating this descriptor in the model enhances the reliability of the 

predictions. 

Furthermore, Table 3 reveals that the stepwise-MLR model incorporates three descriptors. 

Specifically, the Mulliken charge of C13 exhibits a positive mean effect of +13.27 on the 

expected response. An increase in the partial charge of C13 leads to enhanced interactions 

between C13 and N12, subsequently influencing the interaction between the cation and AIP, 

and ultimately increasing interference caused by the cation. 

Comparing the squared regression coefficients (R2) and standard error values, the GA-MLR 

model demonstrates superior descriptive capability with R2 and standard errors of 0.832 and 

0.442, respectively. In contrast, the stepwise-MLR model yields R2 and standard errors of 0.816 

and 0.507, respectively. Consequently, the GA-MLR model provides a more comprehensive 

description of the relationship between the selectivity coefficients and the molecular structure. 
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To construct a QSPR equation with enhanced predictive capability, a combination of 

quantum chemical and dragon descriptors was employed. Initially, the descriptors selected by 

the genetic algorithm (GA) were utilized to develop a predictive multiple linear regression 

(MLR) model. The resulting linear model consisted of four variables, and the standard error 

(S.E.) was calculated for all molecules included in the study. 

The analysis revealed that the praseodymium cation (Pr3+) stood out as an outlier, with a 

residual value exceeding three times the standard error (1.13 > 1.00). This discrepancy could 

potentially be attributed to experimental errors. Consequently, this particular cation was 

excluded from the original dataset. Subsequently, an equation linking the selectivity 

coefficients and the molecular descriptors was derived as follows: 

Log ksel = -3.224 + (-0.253) RDF070u + (9.201) Mor26m (3) 

+ (-4.944) Mor13v + (-51.606) H7v 

In order to prediction of the selectivity coefficients of the lanthanum-selective electrode, 

two distinct approaches were utilized: the genetic algorithm (GA) and stepwise regression 

methods. Table 4 showcases the resultant QSPR models derived from these methods. Notably, 

the GA-MLR model exhibited significant improvements compared to the stepwise-MLR model 

in terms of the squared regression coefficients (R2) and standard errors. The R2 value increased 

from 0.880 to 0.945, while the standard error decreased from 0.400 to 0.258. 

 

                           Table 4. Selected predictive models of multiple linear regression 

 Descriptor Notation Coefficient t-Test 

 

 

 

 

GA-MLRa 

Radial Distribution Function-7.0 RDF070u -0.253 -6.126 

3D-Morse-signal 26/ 

weighted by atomic masses 

Mor26m 9.201 15.384 

3D-Morse-signal 13/ weighted by 

atomic van der waals volumes 

Mor13v -4.944 -6.651 

H autocorrelation of lag 7 H7v -51.606 -9.405 

constant  -3.224 -3.147 

 

 

 

Stepwise-

MLRb 

Mulliken charge of cation MCC 1.445 9.361 

Mulliken charge of H34 34H 23.307 7.170 

R maximal autocorrelation of lag 2/ 

weighted by atomic polarizabilities 

R2p+ 48.172 -3.354 

3D-Morse-signal 32/ weighted by 

atomic Sanderson electronegativities 

Mor32e -3.701 3.223 

constant  -16.485 -10.203 

a Statistics of the model: n = 23, R2 = 0.945, Q2=0.914, S.E = 0.258 and F = 78.3 
b Statistics of the model: n = 24, R2 = 0.880, Q2=0.772, S.E = 0.400 and F = 45.98 
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The comparative analysis between the GA-MLR and stepwise-MLR methodologies 

yielded comprehensive insights into their respective performances, clearly establishing the 

superiority of the GA-MLR model. Consequently, the GA-MLR model was selected as the 

preferred predictive model for this study. As shown in Table 4, the GA-MLR model 

incorporated four dragon descriptors. Notably, one of the 3D descriptors incorporated in the 

GA-MLR model was RDF070u, belonging to the category of Radial Distribution Function 

(RDF) descriptors. The RDF descriptor represents the probability distribution of locating an 

atom within a spherical volume of radius R in an ensemble of A atoms. With the aid of simple 

rule sets, the RDF descriptor can be interpreted, enabling the conversion of the code into its 

corresponding 3D structure. In addition to providing information on interatomic distances 

throughout the molecule, the RDF code offers valuable insights into bond distances, ring types, 

planar and non-planar systems, and atom types. This attribute is particularly advantageous for 

computer-assisted code elucidation [32]. Notably, RDF070u exhibits a negative sign, 

indicating an inverse relationship between the selectivity coefficient and this specific 

descriptor. 

Two additional descriptors, Mor26m and Mor13v, are included in the model, both of which 

belong to the 3D-MoRSE descriptors. The 3D-MoRSE descriptors are derived from the 

simulation of Infrared spectra using a generalized scattering function [32]. Mor26m represents 

signal 26 weighted by atomic masses, while Mor13v represents signal 13 weighted by atomic 

van der Waals volumes.  

Mor26m exhibits a positive sign, indicating a direct relationship between the selectivity 

coefficient and this descriptor. Consequently, an increase in atomic mass corresponds to an 

increase in selectivity coefficient values. On the other hand, Mor13v displays a negative sign, 

indicating an inverse relationship. Hence, an increase in the van der Waals volume of the 

molecules results in a decrease in selectivity coefficient values. 

 

Table 5. Correlation matrix of the selected descriptors 

 

 

 

 

 

 

 

Furthermore, H7v is classified as an Autocorrelation descriptor. These descriptors are 

calculated based on the 3D-spatial molecular geometry, utilizing interatomic distances 

collected in the geometry matrix and a property function defined by a set of atomic properties 

 RDF070u Mor26m Mor13v H7v 

RDF070u 1    

Mor26m 0.442 1   

Mor13v 0.088 0.337 1  

H7v -0.282 0.210 0.436 1 
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[32]. The negative sign associated with H7v signifies an inverse relationship between the 

selectivity coefficient and this descriptor. 

The correlation matrix, as presented in Table 5, illustrates the relationships between the 

selected descriptors. It is evident from the table that the linear correlation coefficients between 

each pair of descriptors are below 0.442. This indicates that there are no significant correlations 

observed among the selected descriptors. 

To validate the reliability and efficacy of the predictive model, several techniques were 

employed, including bootstrap analysis, y-scrambling, and external validation [32,31]. The 

bootstrapping process was repeated 3000 times, while y-scrambling was performed 300 times. 

The statistical parameters of the predictive model are reported as follows: 

R2 = 0.945; Q2 
LOO = 0.914; Q

2 
BOOT = 0.890; Q

2 
EXT = 0.862; 

s = 0.258; a =0.091; F = 78.3                                           (4) 

The disparities observed among Q2 LOO, Q2 BOOT, Q2 EXT, and R2 affirm the validity and 

strong predictive capability of the obtained model. Furthermore, the intercept value of the y-

scrambling analysis (a=0.091) indicates that chance correlation had minimal or negligible 

influence on the development of the model [33]. 

 

Table 6. presents a comprehensive comparison of the standard error of prediction (SEP) and 

the standard error of testing (SET) for the selected predictive model, alongside the test models 

derived using various molecules as the prediction set 

 
Model SET SEP Molecules in the prediction seta 

Selected model 0.228 0.286 9, 10, 12, 22, 26 and 28 

Test model I 0.247 0.329 1, 5, 15, 18, 20 and 30 

Test model II 0.275 0.366 4, 6, 7, 16, 21 and 27 

Test model III 0.281 0.367 3, 8, 13, 17, 24 and 29 

Test model IV 0.239 0.306 2, 11, 19, 23 and 25 

a Numbers refer to the number of the compounds given in Table 1. The remaining cations for each set are due 

to the corresponding training set. 

 

Considering the small size of the dataset, different prediction and training sets were utilized 

to train the multiple linear regression (MLR) model. For each iteration, a random selection of 

six cations out of the 29 cations was designated as the prediction set, while the remaining 

cations were employed to develop the MLR model. Subsequently, the selectivity coefficients 

of the six cations in the prediction set were predicted using the GA-MLR model. This process 

was repeated three times, and the standard error of training (SET) and standard error of 
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prediction (SEP) are presented in Table 6. Notably, the results obtained demonstrate 

independence from the specific cations used in the prediction set. 

The correlation between the experimental and predicted values of the selectivity 

coefficients is excellently depicted in Figure 3, where a plot of the calculated values against 

the experimental values is shown. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Plot of the calculated selectivity coefficients against the experimental values 

 

Figure 4 displays the residuals of the MLR-predicted values of the selectivity coefficients 

plotted against the corresponding experimental values. The distribution of the calculated 

residuals on both sides of the zero line indicates the absence of any systematic errors in the 

development of the MLR model. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Plot of the residuals vs. experimental selectivity coefficients 

 

4. CONCLUSION 

The GA-MLR modeling approach was employed to predict the selectivity coefficient 

values of a La(III) membrane sensor. The selectivity coefficient is a crucial parameter in 

electrochemical sensors, and its measurement is often time-consuming and expensive. In this 
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study, we propose a novel chemometrics-based method for predicting selectivity coefficients 

of cation sensors, specifically focusing on lanthanides sensors. This research is particularly 

intriguing due to the limited availability of cation descriptors and the utilization of a restricted 

basis set for lanthanides calculations. Consequently, QSPR investigations on selectivity 

coefficients of cation sensors, especially those targeting lanthanides, have garnered significant 

interest. 

The QSPR model efficiently estimated and predicted the selectivity coefficients of the 

Lanthanum-selective electrode based on the AIP (Atom Invariant Polarizability) approach. 

Initially, the MLR model with quantum chemical descriptors was constructed, benefiting from 

their simplicity and significance in characterizing chemical properties. The resulting MLR 

model demonstrated a good descriptive ability. 

To design a QSPR equation capable of predicting the selectivity coefficients of the Lanthanum-

selective electrode, both quantum chemical descriptors and dragon descriptors were employed. 

Given that GA serves as a "black box" variable selection method, the stepwise regression 

technique was also utilized in developing the MLR model, and its results were compared to 

those of the GA-MLR model. The findings clearly indicate the superior performance of the 

GA-MLR model over the stepwise-MLR model. 
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