

2023 by CEE www.abechem.com

Supplementary Materials

Corrosion Mitigation of Carbon Steel using Pyrazole Derivative: Correlation of Gravimetric, Electrochemical, Surface Studies with Quantum Chemical Calculations

L. Adlani,¹ N. Benzbiria,² A. Titi,³ F. Benhiba,^{4,5,*} I. Warad,⁶ N. Timoudan,⁵ G. Kaichouh,⁵ A. Bellaouchou,⁵ R. Touzani,³ H. Zarrok,¹ H. Oudda,¹ and A. Zarrouk,^{5,*}

¹Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, P.O. Box. 133, 14000 Kenitra, Morocco

²Laboratory of Interface Materials Environment, Faculty of Sciences Aïn Chock, Hassan II University, B.P. 5366 Maârif, Casablanca, Morocco

³Laboratory of Applied and Environmental Chemistry (LCAE), Mohammed First University, Oujda, Morocco

⁴Higher Institute of Nursing Professions and Health Techniques of Agadir, Annex Guelmim, Morocco.

⁵Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, P.O. Box. 1014, Rabat, Morocco

⁶Department of Chemistry, AN-Najah National University, P.O. Box 7, Nablus, Palestine

*Corresponding Authors, Tel.: +212665201397 (F. Benhiba); +212665201397 (A. Zarrouk) E-Mails: <u>benhibafouad@gmail.com</u> (F. Benhiba); <u>azarrouk@gmail.com</u> (A. Zarrouk) Anal. Bioanal. Electrochem., Vol. 15, No. 11, 2023, 967-987 (Supplements) https://www.doi.org/10.22034/abec.2023.709114

Figure S1. Arrhenius graphs for (CS/1MHCl) without and with 10^{-3} M of L5

Figure S2. Transition state graphs for (CS/1MHCl) without and with 10^{-3} M of L5

Anal. Bioanal. Electrochem., Vol. 15, No. 11, 2023, 967-987 (Supplements) https://www.doi.org/10.22034/abec.2023.709114

Figure S3. Langmuir isotherm for adsorption of L5 on CS surface in 1M HCl

Figure S4. UV–visible spectra of 10⁻³ M L5 compound added to 1MHCl with and without carbon steel

Anal. Bioanal. Electrochem., Vol. 15, No. 11, 2023, 967-987 (Supplements) https://www.doi.org/10.22034/abec.2023.709114

Figure S5. Protonation site defined by its percentage versus pH of L5

Figure S6. Energy-minimized structures, FMOs, and MESPs of the two neutral and protonated forms for L5 and L5H⁺

Figure S7. RDF of forms L5-Fe (110) and L5H⁺-Fe (110)

Table S1. Evolution of W and the corresponding IEw% vs. various temperatures for CS
immersed in 1M HCl with and without 10 ⁻³ M of L5

Medium	Т	$W \qquad IE_{w}$ (%)		
	(K)	$(mg/cm^2 h)$		
	303	2.880		
	313	4.803		
Blank	323	7.187		
	333	10.050		
	303	0.084	97.1	0.971
L5	313	0.247	94.9	0.949
	323	0.665	90.7	0.907
	333	1.703	83.1	0.831

	R^2	E_a	$\Delta {H}^{*}_{a}$	ΔS^*_a	$E_a - \Delta H_a^*$
Conc(M)		(kJ/mol)	(kJ/mol)	(J/mol K)	(kJ/mol)
Blank	0.99775	34.90	32.27	-129.50	2.63
10 ⁻³ M L5	0.99999	84.06	81.43	3.13	2.63

Table S2. Thermodynamic parameters were generated for 10⁻³ M of L5 in 1 M HCl

 Table S3. Thermodynamic descriptors resulting from Langmuir isotherm plot for {L5/CS/1M HCl}

 system

Medium	Slope	R^2	K _{ads} (L/mol)	ΔG^*_{ads} (kJ/mol)
L5	1.03	0.9999	343299.31	-42.23

Table S4. EDX analysis of CS surface after 6h immersion in $1M HCl + 10^{-3} M$ of L5 at 303 K

Element	Weight %	Atom %
С	1.80	6.31
Ν	0.46	1.38
0	9.58	25.23
Al	0.22	0.34
S	0.11	0.14
Cl	0.70	0.84
Mn	0.83	0.64
Fe	86.30	65.12
Total	100.00	100.00

Table S5. E_{inter} for the systems L5/Fe(110) and L5H⁺/Fe(110) (in kJ mol⁻¹)

Systems	Einteraction
L5/Fe(110)	-782.712
L5H ⁺ /Fe(110)	-765.519

Inhibitors	Metallic alloys	Medium	Optimal concentration	IE (%)	Ref.
Ethyl 5-methyl-1-(((6-methyl-4-	Carbon steel	1 M HCl	10 ⁻³ M	92	[54]
nitropyridin-3-yl)amino)methyl)-1H-					
_pyrazole-3-carboxylate (EMPC)					
3, 5-dimethyl-1H-pyrazol-1-yl) (4-((4-	Carbon steel	1 M HCl	400 ppm	89.5	[55]
chlorobenzy-lidene) amino) phenyl)					
methanone) (DPCM)					
N-((1H-pyrazol-1-yl)methyl)pyrimidin-	Carbon steel	1 M HCl	10 ⁻³ M	94	[56]
2-amine (PPA)					
2-(((1H-pyrazol-1-	Carbon steel	1 M HCl	10 ⁻³ M	92	[56]
yl)methyl)amino)benzoic acid (PMB)					
Ethyl 4-(5-acetyl-4-amino-3-(thiazol-2-	Low carbon	0.5 M HCl	10 ⁻³ M	89	[12]
ylcarbamoyl)-1H-pyrazol-1-yl)benzoate	steel				
(EATPB)					
2,4-diamino-5-(5-amino-3-hydroxy-1H-	Carbon steel	1 M HCl	5 10 ⁻⁴ M	92	[13]
pyrazole-1-					
carbonyl)thiophene-3-carbonitrile (I)					
N-(2-aminophenyl)- 2-(5-methyl-1H-	C38 steel	1 M HCl	5 mM	93	[57]
pyrazol-3-yl) acetamide (AMPA)					
N,N-dimethyl-4-(((1-methyl-2-phenyl-	Carbon steel	1 M HCl	5 10 ⁻³ M	94	[58]
2,3-dihydro-1H-pyrazol-4-					
yl)imino)methyl)-N-dodecyl					
benzenaminium bromide (APS-12)					
N-((3,5 dimethyl-1H-pyrazol-1-	Carbon steel	1 M HCl	10 ⁻³ M	95.10	Present
yl)methyl)-4-nitroaniline (L5)					work

Table S6. Comparison of L5 results with other pyrazole derivatives

Copyright © 2023 by CEE (Center of Excellence in Electrochemistry)

ANALYTICAL & BIOANALYTICAL ELECTROCHEMISTRY (http://www.abechem.com)

Reproduction is permitted for noncommercial purposes.