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Abstract- The quantitative structure-property relationship (QSPR) method has been used for 

the prediction of carbonate potentiometric selectivity of plasticized polymeric membrane 

sensors. The variable selection tools of genetic algorithm (GA) combined with the multiple 

linear regressions (MLR) as linear and support vector machine (SVM) as nonlinear regression 

methods have been used. The K-means clustering method has been used for dividing the data 

set into the training set and test set. The validation of the models was done by the internal cross-

validation and external test set. The results showed that the GA-SVM was a very accurate 

method in predicting of carbonate potentiometric selectivity with high correlation coefficients 

of 0.983 and 0.965 for the training and test sets. The results of this study and the interpretation 

of entered descriptors in the model can help to design new selective ligands. 

 

Keywords- Ion-selective electrode; Carbonate sensing; QSPR; Genetic algorithm; Support 

vector machine 
 

1. INTRODUCTION  

One of the popular analytical devices for measuring ion concentrations in aqueous solutions 

is a potentiometric sensor. It measures the potential difference between two electrodes under 

the conditions of no current flow. In terms of instrumentation, it is simple, portable, and not 

very expensive, yet quite accurate [1]. The ion-selective sensors, whit the base of ionophores 
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are widely employed for the quantitative determination of ions in different samples [2]. The 

search for finding of novel ionophores, which are sensitive for different ions, is time-

consuming and tedious process. For assay the sensitivity and selectivity of the novel 

membranes sensors, it need to chemical synthesis of candidate substances, their purification 

and characterization, sensor membrane preparation, and potentiometric measurements [1]. 

Overcoming these limitations, techniques based on quantitative structure-property 

relationships (QSPR) have emerged as a suitable and useful alternative tool in various 

disciplines [3,4]. Previous studies have shown that QSPR can be applied to modeling the 

sensing properties of ionophore-based potentiometric sensors [5]. QSPR models based on 

different approaches essentially seek to correlate and establish a logical relationship between 

the studied composite structures and their related properties. To begin the QSPR method, it is 

necessary to calculate the theoretical parameters called descriptors, which are described by the 

algebraic value of the structure or shapes of each of the selected molecules[6-8]. Among the 

large number of descriptors calculated for each molecule, only a few descriptors play an 

important role in molecular properties. Therefore, employing a technique to select the 

respective variables is one of the essential steps in QSPR method. Over the last few decades, 

the genetic algorithm (GA) feature selection approach as an effective variable selection method 

wildly used in the development of QSAR/QSPR models[3,9-13]. The genetic algorithms 

feature selection method is based on Darwin's evolutionary hypothesis and includes some 

critical genetic-based functions such as mutation, cross-over, and so forth [14,15].  

The multiple linear regressions (MLR) are one of the best linear modeling methods, 

because of its computational efficiency, simplicity and interpretability. Also, the support vector 

machine (SVM) is one of the most commonly used machine learning algorithms for non-linear 

data modeling. In this work, the GA-MLR and GA-SVM as linear and nonlinear methods, were 

used to construct the QSPR models and prediction of carbonate potentiometric selectivity of 

plasticized polymeric membrane sensors and finally, the results of two models were compared.  

 

2. EXPERIMENTAL SECTION 

2.1. Data Set 

The data set containing of the 40 carbonate ionophores which was compiled from the 

literature[16-23]. In this study, the selectivity values were the logKsel(HCO3
-/Cl-). In this work, 

from the different data on the literature, only the data that were obtained in the pH range of 

7.0–8.6 was considered, to ensure that the HCO3
- is a dominant ionic form in the solutions. The 

chemical structures of ionophores and the respective selectivity's are listed in Table 1.  
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Table 1. Chemical structures of ionophores, and respective experimental and predicted 

selectivity 

 
No. Structure of ionophore Exp. logK(HCO3

-/Cl-) Pred. 

GA-MLR 

Pred. 

GA-SVM 

M1 

 

-2 -2.2 -2.5 

M2 

 

-1.8 -2.8 -2.3 

M3 

 

-3.2 -2.7 -3.2 

M4 

 

-3.8 -3.2 -3.3 

M5 

 

-4 -2.8 -3.4 

M6 

 

-5 -5.0 -4.6 

M7a 

 

-4 -4.5 -3.7 

M8 

 

-5 -4.5 -3.6 

M9a 

 

-5 -3.8 -4.6 

M10 

 

-2.1 -3.1 -3.1 

M11 

 

-3.7 -2.6 -3.4 

M12 

 

-3 -3.2 -3.0 

M13 

 

-2.8 -2.3 -2.8 

M14 

 

-3 -2.0 -2.9 

M15 

 

-3.2 -2.4 -3.2 

M16 

 

-3.2 -4.4 -3.4 

 

 

 

 

 

 

 
 

 

-3.6 - - 
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No. Structure of ionophore Exp. logK(HCO3
-/Cl-) Pred. 

GA-MLR 

Pred. 

GA-SVM 

 

 

M17b 

 

 

 
M18 

 

-0.7 -0.9 -0.7 

M19 

 

-1 -1.9 -1.0 

M20a 

 

-2.5 -3.4 -2.5 

M21 

 

-5.2 -4.3 -5.2 

M22 

 

-4.7 -4.0 -4.7 

M23a 

 

-5.7 -4.1 -4.9 

M24  

 

-3.1 -3.8 -3.7 

 

 

 

 

 

 

-5.8 -4.7 -5.8 
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No. Structure of ionophore Exp. logK(HCO3
-/Cl-) Pred. 

GA-MLR 

Pred. 

GA-SVM 

 

M25 

 

 
M26 

 

-4.2 -5.4 -4.2 

M27 

 

-2.6 -3.7 -2.6 

M28 

 

1.7 1.3 1.7 

M29 

 

1.6 0.9 1.6 

M30 

 

5.5 6.3 5.5 

 

M31a 

 

 

4.9 5.9 5.2 

M32 

 

6.2 6.5 6.0 

 

 

 

 
 

 

4.8 4.4 4.8 
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No. Structure of ionophore Exp. logK(HCO3
-/Cl-) Pred. 

GA-MLR 

Pred. 

GA-SVM 

 

M33 

 

 
M34a 

 

2.8 1.1 1.6 

M35 

 

1.4 1.6 1.4 

M36 

 

4.5 3.2 4.5 

M37a 

 

0.2 0.7 1.5 

 

M38 
 

 

2.9 2.6 2.9 

M39a 

 

1.1 2.4 2.0 

M40 

 
 

1.3 2.1 1.3 

a test set 
b Outlier 
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2.2. Descriptors calculation  

The 2D chemical structures of the 40 studied ligands were first drawn in Hyperchem 7.5 

software. The pre-optimization and also, the final optimization have been done using the 

molecular mechanics force field (MM+) and semi-empirical methods (AM1), respectively [24]. 

Optimizing the molecular structures was carried out until the root mean square gradient 

amounted to 0.01 kal/mol. Next, the molecular descriptors were obtained using DRAGON 

v5.5, which uses minimum-energy molecular geometries. Thus for each molecule in the data 

set, 3224 descriptors were calculated [25,26]. A set of descriptors with constant values and also 

with almost constant values were removed from the calculated descriptors. After they had been 

analyzed for constant or near constant variables, among the descriptors with correlation 

coefficients more than 0.9, only the one with the highest correlation with the selectivity remains 

for development of the QSPR models. Finally, 302 molecular descriptors remained.  

 

2.3. Dividing data set 

In order to avoiding any information lost during creation of models and fitting step in the 

QSPR study, dividing of the data set into the training and test sets is one of the most important 

steps. In this work, the hierarchical clustering method was used to dividing of the data set. The 

hierarchical clustering is a statistical method for finding relatively homogeneous clusters of 

cases based on measured characteristics [27].  

 

 
Figure 1. A dendrogram results of the hierarchical clustering for the training and test sets 
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The hierarchical clustering can be illustrated by a dendrogram that each step of clustering 

process is showed by a linkage. Figure 1 shows dendrogram of used data set. The selection of 

the compounds to dividing of data set to the training and test sets was done randomly from 

each cluster with close investigation of the property of each selection and also, by the following 

manner. a) the range of the property values (logKsel(HCO3
-/Cl-)) of the training and the test sets 

should be covered from the lowest to the highest; b) each selected data point for the test set, 

should show the high distance linkage of dendrogram from the previously chosen one.  The 

entire data set consisted of 40 ionophores divided into the training (32 ionophores) and test set 

(8 ionophores) considering the ratio of 80% and 20% of the data set, respectively.  

 

2.4. Genetic algorithms  

Using a genetic algorithm (GA), the most relevant descriptors were selected with respect 

to the objective function [28,29]. In this project, a genetic algorithm method was written in 

Matlab 6.5 program [30] and used as a selection tool. The details of genetic algorithms can be 

found in our previous works [31,32]. Here, the cross-validation correlation coefficient of leave-

one-out (Q2
LOO derived using MLR), was the fitness function for the genetic algorithm [33].  

 

 

3. RESULTS AND DISCUSSION 

3.1. Variable Selection 

Suitable descriptors were chosen by the genetic algorithm. Only three descriptors 

(Mor06m, BEHp1, B07[O-O]) were selected based on the genetic algorithm. Using these 

descriptors, multiple linear regression analysis was applied to the training data and evaluated 

the results by the test data. It is necessary to construct a correlation matrix involving the 

correlation coefficients between selected descriptors to ensure the independent behavior of the 

implemented descriptors. The low correlation coefficients between each pair of the descriptors 

confirm that these variables behave independently in the models. Also, the multi-collinearity 

of descriptors were determined using the variation of inflation factors (VIF) [34]. In this case, 

models constructed with numerical values of VIF between 1 and 5 are considered acceptable 

and predictive. There is no inter-correlation if it equals 1. If the VIF value exceeds 10.0, there 

is an unacceptable and unstable model. The correlation coefficients and VIF values of selected 

descriptors based genetic algorithm are shown in Table 2. Here, the highest numerical 

correlation coefficient between each pair of descriptors is 0.30. Also, as shown in Table 2, the 

selected descriptors have VIF values below 2 which confirms the adequate predictiveness of 

the suggested models based on these descriptors. 
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Table 2. The correlation coefficient of selected descriptors and corresponding VIF values 

based on GA-MLR 

 

 Mor06m BEHp1 B07[O-O]  VIF 

 

Mor06m 1 0 0  1.17 

BEHp1 -0.30 1 0  1.09 

B07[O-O] -0.24 -0.06 1  1.14 

 

3.2. Linear model construction 

Based on the genetic algorithm-multiple linear regression analysis, a predictive QSPR 

model was developed with three descriptors as the followings: 

logK(HCO3
-/Cl-) = -43.402 – 0.275 (Mor06m) + 10.638(BEHp1)- 2.087(B07[O-O])  (1) 

Ntrain=32, R2
train=0.916, R2

test= 0.903, R2
adj= 0.907, Ftrain=102.046, Ftest=12.306, Q2

Loo=0.896, 

Q2
LGO=0.821  

N represents the number of molecules in the training set, and Q2
LOO and Q2

LGO are cross-

validation coefficients for leaving one out and leaving a group out (usually, 20% are excluded), 

respectively. Based on the value for Q2
LOO (0.896), the built model demonstrates remarkable 

reliability. A squared correlation coefficient, an adjusted correlation coefficient, and a Fisher 

F statistic are known as R2
adj, R

2 and F.  

 

3.3. Outlier detection 

To visualize the applicability domain and assess any possible outliers within the data set, 

the William plot was used. Figure 2, shows the Williams plot. The warning leverage (h*) is 

defined by the following formula: 

h*= 3p/n      (2) 

Here, the number of calibration compounds is n, and the number of model variables plus 

one is p. The leverage (h) greater than the warning leverage (h*) indicates that the compound 

is highly influential. Furthermore, standardized residuals of 3 are commonly used as a cut-off 

value for accepting predictions, since they cover about 99% of all normally distributed data 

points. Based on the Williams plot (Figure 2), two compounds (m30 and m32) have leverage 

(h) greater than the warning h* value of 0.375. As a result, they should be considered structural 

outliers. However, these compounds have the low standardized residual value and can be 

retained in the model. Also, compound m17, showed the large standardized residual (more than 

3), and so, only compound m17, was detected as outlier compound. In the next step, this 

compound should be removed from the data set, and the new model should be generated. 
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Figure 2. The Williams plot of GA-MLR model for the training and test sets 

 

The new GA-MLR model after removing of outlier compound (m17) was developed and 

the linear equation was as follow: 

logK(HCO3
-/Cl-) = -42.570 – 0.285 (Mor06m) + 10.473(BEHp1)- 2.275(B07[O-O])  (3) 

Ntrain=31, R2
train=0.944, R2

test= 0.907, R2
adj= 0.937, Ftrain=150.444, Ftest=12.914, Q2

LOO=0.926, 

Q2
LGO=0.888  

Compared to calculated R2 values for both sets, the built model after removing of the outlier 

compound could improve the results. Table 3 shows the statistical parameters of the GA-MLR 

model. Lower root means square error values (RMSE train = 0.798 and RMSE test = 1.153) and 

higher R2 and F values demonstrate the model's predictive capability. Table 1 shows the 

predicted carbonate potentiometric selectivity of plasticized polymeric membrane sensors for 

whole molecules based on GA-MLR model. The predicted values of logK(HCO3
-/Cl-) for the 

compounds in the training and test sets using equation 3 were plotted against the experimental 

values in Figure 3. 

 

Table 3. Statistical results of different QSPR models 

 
 Method  Training/Calibration  Test/Validation 

   R2 RMSE F  R2 RMSE F 

This work GA-MLR  0.944 0.798 150.444  0.907 1.153 12.914 

This work GA-SVM  0.986 0.398 617.692  0.962 0.780 26.707 

Reference [16] PLS  0.93 0.83 -  0.82 1.40 - 

 

In order to evaluate the robustness of the constructed model, a Y-randomization test was 

conducted. Using this approach, logK(HCO3
-/Cl-) values are shuffled and then a new model is 
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developed based on the randomized data. It is imperative that the new built models have lower 

R2 and Q2
LOO values to validate the main derived model's efficiency. This means that the 

goodness of the built model cannot be attributed to chance, as shown in Table 4 by the values 

of R2 and Q2
LOO (the values are less than 0.2). 

 

 

Figure 3. The plot of predicted vs. experimental selectivity by GA-MLR 

 

Table 4. The Q2 LOO and R2 training values after several Y-randomization tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Genetic algorithm-support vector machine 

In addition to the GA-MLR model developed as a linear model, the SVM method was used 

to develop the nonlinear model based on the same selected descriptors and then compared its 

performance to the GA-MLR method. The details of support vector machine can be found in 

R² = 0.9436
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No Q2 R2 

1 0.009 0.135 

2 0.032 0.174 

3 0.008 0.119 

4 0.181 0.032 

5 0.017 0.150 

6 0.108 0.041 

7 0.008 0.114 

8 0.008 0.082 

9 0.009 0.092 

10 0.154 0.035 
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our previous works [35-37]. In SVM regression, different factors are taken into account, 

including capacity parameter, kernel function type, ε -insensitive loss function and also its 

corresponding parameters [38].  

First of all, the kernel function type should be decided, which determines the sample 

distribution in the mapping space. The radial basis function (RBF) is commonly used in many 

studies because of its good general performance and few parameters to be adjusted. The RBF 

is given below: 

exp (-𝛾 ∗ |u-|2 )     (4) 

According to this formula, u and  are independent variables, and 𝛾 is a karnel parameter. 

𝛾 regulates the RBF function and is directly responsible for the SVM performance and training  

time. To optimize the 𝛾 parameter, the leave one out cross-validation was used on the original 

training set to perform a grid search. It was checked from 0.01 to 5 with incremental steps of 

0.01. RMSEs of cross-validation were also determined. A plot of gamma (𝛾) parameter values 

against cross-validation RMSE is presented in Figure 4 which shows that 4.21 is the optimal 

value for gamma (𝛾) parameter. 

 

 

Figure 4. The gamma(γ) vs. RMSE for the training set 

 

As a result of ε-insensitive parameter, the entire training set cannot meet boundary 

conditions, hence sparsity is allowed in the dual formulation's solution. The optimal value for 

this parameter depends on the type of noise present in the data. For the different values of ε, 

the RMSE of cross-validation varied from 0.001 to 0.04 in increments of 0.001. Figure 5 shows 

the values of ε -insensitive as a function of the obtained RMSE of cross-validation, and the 

optimal value for this parameter is 0.001. 

SVM modelling concludes with parameter C, which controls the trade-off between 

maximizing margins and minimizing training errors. An optimal value for parameter C was 

found by incrementally increasing it by 1 from 1 to 200, as shown in Figure 6. Based on the 

results of the analysis in Figure 6, it is evident that 183 is the optimal capacity parameter. 
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Figure 5. The epsilon (ε) vs. RMSE for the training set 

 

 

Figure 6. The capacity parameter(C) vs. RMSE for the training set 

 

Table 1 and Figure 7 present the results for predicting the logK(HCO3
-/Cl-) value using the 

GA-SVM. In the study above, C = 183, ε = 0.0.001, 𝛾 = 4.21 were found to be the optimal 

value for developing an SVM model. Statistical results of the optimal model for training (R2 

=0.986, F=617.692, RMSE=0.398) and test (R2 =0.962, F=26.707, RMSE=0.780) sets indicate 

the appropriate predictive ability of built model. In comparison with GA-MLR, both of the 

training set and test set compounds performed better on prediction (Table 3). The GA-SVM 

shows superiority over GA-MLR because of lower RMSE, and higher F and R2. Also the results 

are compared with the previous reported work [16]. In the reported work, Vladimirova et al. 

predicted the sensitivity of the same data set by partial least squares (PLS) method and 

substructural molecular fragments were used as molecular descriptors. The comparison of our 

work and their results are shown in Table 3. As can be seen, in all the cases, the GA-MLR and 

GA-SVM were superior than the previously reported PLS method and GA-SVM provided high 

accurate prediction model for carbonate potentiometric selectivity. 
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Figure 7. The plot of predicted vs. experimental selectivity by GA-SVM 

 

3.5. Interpreting of molecular descriptors  

By interpreting the descriptors contained in the model, it is possible to gain some insights 

into factors which are related to the potentiometric selectivity of the studied carbonate 

ionophores. The first selected descriptor is Mor06m which implies 3D-Morse descriptor 

weighted by atomic masses. Based on the distance distribution in the geometrical display of 

the molecules, the 3D-MoRSE descriptors contribute to the formation of the radial distribution 

function code and are processed in light of the sum of the atomic weights when using divergent 

angular scattering [39]. According to equation 3, the Mor06m descriptor has a negative sign, 

indicating that the logK(HCO3
-/Cl-) value is inversely related to this descriptor. 

The second descriptor is BEHp1 (highest eigenvalue n. 1 of Burden matrix / weighted by 

atomic polarizabilities) which is belong to the Burden eigenvalue descriptors. The atomic 

polarizabilities play main role in this descriptor. This descriptor has a positive sign, in equation 

3, which indicates that the logK(HCO3
-/Cl-) value is directly related to this descriptor. 

The third descriptor is B07[O-O]. This descriptor belongs to the 2D binary fingerprint 

descriptors. 2D binary fingerprint descriptors have the value one (1) if there is a relevant bond 

at a topological distance, and have the value zero (0) if there is not. This descriptor represents, 

the presence or absence of O-O at topological distance 07. According to equation 3, the B07[O-

O] descriptor has a negative sign indicating that the logK(HCO3
-/Cl-) value is inversely related 

to this descriptor. 

 

4. CONCLUSION 

In this study, an accurate QSPR model derived from GA-SVM analysis for predicting the 

carbonate potentiometric selectivity of plasticized polymeric membrane sensors. A simple 

model with three descriptors was obtained. The results obtained show that the GA-SVM model 

was able to establish a satisfactory relationship between the molecular descriptors and the 
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potentiometric selectivity of different carbonate ionophores. Good results with high statistical 

quality and low prediction errors were obtained. In comparison; the GA-SVM method 

predicted both of the training and test set compounds more accurately than the GA-MLR 

method and also the previously reported PLS method. The QSPR model developed in this study 

can provide a useful tool to predict the potentiometric selectivity of new carbonate ionophores. 
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