ISSN: ‎2008-4226, Abbreviation: Anal. Bioanal. Electrochem.

Authors

Faculty of Medical Sciences, Goce Delcev University, Stip, Macedonia

Abstract

In this review, we focus on cyclic voltammetry as a reliable electrochemical technique to study mechanisms, kinetics and thermodynamics of various types of drug-drug interactions. While we present and discuss six theoretical models relevant to analyze drug-drug (or drug-DNA) interactions, we also give hints about recent experimental achievements in this field. In addition, we provide the readers several sets of simulated voltammograms and data in tabular form, which can be used to recognize particular mechanism of drug-drug interactions in cyclic voltammetry. Moreover, we give hints to the voltammetric procedures that allow access to kinetics and thermodynamics parameters, which are relevant to various types of drug-drug interactions. The results we present in this work can be of big help to the scientists working in the field of pharmacy, pharmacology, medicinal chemistry and bio-electrochemistry.

Keywords

[1] A. Ozkan, J. M. Kaufmann, P. Zuman, Electroanalysis in biomedical and pharmaceutical sciences (F. Scholz, editor), Springer, Berlin (2015).
[2] J. M. Saveant, Elements of molecular and biomolecular electrochemistry, Wiley, New Jersey (2006)
.
[3] G. M. Eckert, F. Gutmann, H. Keyzer, Electrochemistry of drug-drug interactions and incompatibilities in Modern bioelectrochemistry (F. Gutmann, H. Keyzer, eds.) Springer, Boston, (1986).
[4] D. Rodrigues, Drug-drug interactions, 2nd edition, CRC Press (2019).
[5] R. G. Compton, C. E. Banks, Understanding voltammetry, 2nd edition, Imperial College Press, London (2010).
[6] J. M. Saveant, and F. Xu, J. Electroanal. Chem. 208 (1986) 197.
[7] P. H. Rieger, Electrochemistry, 2nd Edition, Chapman & Hall, London (1994).
[8] A. J. Bard, and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 3rd edition, John Wiley & Sons, Inc. 2004.
[9] L. K. Bieniasz, J.Gonzalez, A. Molina, and E. Laborda, Electrochim. Acta 56 (2010) 543.
[10] A. Molina, J. Gonzales, Pulse voltammetry in physical electrochemistry and electroanalysis, in Monographs in electrochemistry (F. Scholz, ed.), Berlin Heidelberg, Springer (2016).
[11] G. M. Eckert, F. Gutmann, H. Keyzer, Electrochemistry of drug interactions and incompatibilities in Modern Bioelectrochemistry (F. Gutmann, H. Keyzer, eds.), Springer, Boston (1986).
[12] R. Gulaboski, and V. Mirceski, Electrochim. Acta 167 (2015) 219.
[13] R. Gulaboski, and S. Petkovska, Anal. Bioanal. Electrochem. 10 (2018) 566.
[14] A. Molina, and E. Laborda. Detailed theoretical treatment of homogeneous chemical reactions coupled to interfacial charge transfers. Electrochim. Acta 286 (2018) 374.
[15] D. V. Konev, A. E. Antipov, M. M. Petrov, M. A. Shamraeva, and M. A. Vorotyntsev, Electrochem. Commun. 86 (2018) 76.
[16] A. D. Modestov, D. V. Konev, A. E. Antipov, M. M. Petrov, R.D. Pichugov, and M.A. Vorotyntsev, Electrochim. Acta 259 (2018) 655.
[17] M. A. Vorotyntsev, and A. E. Antipov, Electrochim. Acta 258 (2017) 544.
[18] A. Sandford, M. A. Edwards, K. J. Klunder, D. P. Hickey, M. Li, K. Barman, M. S. Sigman, H. S. White, and S. D. Minteer, Chem. Sci. 20 (2019) 6404.
[19] A. J. Bard and L. R. Faulkner, Electrochemical Methods, John Wiley & Sons, Inc., Hoboken NJ, 2nd edition, 2001.
[20] J. M. Savéant, Moilecular catalysis of electrochemical reactions. Mechanistic aspects, Chem. Rev. 1008 (2008) 2348.
[21] S. Kuss, and R. G. Compton. Electrochim. Acta 242 (2017) 19.
[22] P. Song, A. C. Fisher, J. D. Wadhawan, J. J. Cooper, H. J. Ward, and N. S. Lawrence, RSC Advances 6 (2016) 70237.
[23] Q. Lin, Q. Li, Ch. Batchelor-McAuley, and R. G. Compton, J. Electrochem. Sci. Tech. 4 (2013) 71.
Anal. Bioanal. Electrochem., Vol. 12, No. 3, 2020, 345-364 364
[24] A. Molina, J. M. Gomez-Gil, J. Gonzalez, and E. Laborda, J. Electroanal. Chem. 847 (2019) 113097. doi.org/10.1016/j.jelechem.2019.04.057
[25] S. Petkovska, and R. Gulaboski, Croat. Chem. Acta 92 (2019) P1.
[26] J. Hirst, Biochim. Biophys. Acta 1757 (2006) 225.
[27] S. Petkovska, and R. Gulaboski, Electroanalysis 32 (2020) doi/10.1002/elan.201900698.
[28] E. Bicer, and P. Qetinkaya, J. Chil. Chem. Soc. 54 (2009) 46.
[29] M. S. Ibrahim, Anal. Chim. Acta 443 (2001) 63 .
[30] D. A. Qin, X. Q. Cai, Q. Miao, Z. H. Wang, and M. L. Hu, Int. J. Electrochem. Sci. 9 (2014) 1608.
[31] K. Pradeep, R. Brahman, A. Dar, and K. S. Pitre, Arab. J. Chem. 9 (2016) S1884.
[32] M. A. G. Trindade, P. A. C. Cunha, T. A. de Araújo, G. M. da Silva, and V. S. FerreiraI, Eclética Química 31 (2006) 31.
[33] M. A. Ghandour, A. Hassan, and H. M. Ali, Int. J. Pharm. Sci. Res. 13 (2017) 5183.
[34] F. Perveen, N. Arshad, R. Qureshi, J. Nowsherwan, A. Sultan, B. Nosheen, and H. Rafique, Plos One, 13 (2018) 1.
[35] P. S. Guin, and S. Das, Int. J. Electrochem. (2014) 1.
[36] Nematollahi, B. F. Barnaji, and A. Amani, Iran. J. Pharm. Res. 14 (2015) 1115.
[37] S. Ambika, Y. Manojkumar, S. A. B. Gowdhami, K. K. M Sundaram, R. V. Solomon, P. Venuvanalingam, M. A. Akbarsha, and M. Sundararaman, Sci. Rep. 9 (2019) 1.
[38] X. Wang, L. Sun, N. Zou, and Z. Yu, Int. J. Electrochem. Sci. 10 (2015) 7320.
[39] J. Korac, D. M. Stankovic, M. Stanic, D. Bajuk-Bogdanovic, M. Zizic, J. Bogdanovic Pristov, S. Grguric-Sipka, A. Popovic-Bijelic, and I. Spasojevic, Sci. Reports 8 (2018) 1.
[40] . Arshad, and S. I. Farooqi, Cyclic Voltammetric Appl. Biochem. Biotechnol. 186 (2018) 1090.
[41] H. S. Sayiner, T. Bakir, and F. Kandemirli, Bulg. Chem. Comm. 50 (2018) 398.
[42] A. E. Radi, H. M. Nassef, and M. I. Attallah, Anal. Meth. 10 (2015) 4159.
[43] B. Devi, N. R. Singh, and M. D. Devi, J. Chem. Pharm. Res. 3 (2011) 789.
[44] M. S. Ibrahim, Anal. Chim. Acta 443 (2001) 63.
[45] L. Fotouhi, Z. Atoofi, and M. M. Heravi, Talanta 103 (2013) 194.
[46] L. Fotouhi, and R. Tabatabaee, Spectrochim. Acta A 121 (2014) 152.
[47] L. Fotouhi, A. B. Haskavayi, and M. M. Heravi, Int. J. Biol. Macromol. 53 (2013) 101.