Extended-Gate Field-Effect Transistor based Sensor for Detection of Hyoscine N-Butyl Bromide in its Pharmaceutical Formulation

Authors

1 Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran, 1417614411, Iran

2 School of Electrical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

A novel recognition method for selective determination of the hyoscine N-Butyl bromide (HBB), an antispasmodic agent for smooth muscles, was devised using extended gate field-effect transistor (EG-FET) as transducing unit. For this purpose a PVC membrane, containing hyoscine n-butyl-tetraphenyl borate ion-pair as recognition component, was coated on Ag/AgCl wire, which was connected to the extended metal gate. In optimal conditions, the linear range for HBB was 10-8-10-5 molL−1 with limit of detection 1.7×10-9 molL-1. The proposed sensor was applied in real sample, it showed fast response with high accuracy, and therefore it could be used as HPLC detector in the pharmaceutical samples in quality control.

Keywords


[1] A. A. Gouda, Arab. J. Chem. 3 (2010) 33.
[2] R. A. Shaalan, R. S. Haggag, S. F. Belal, and M. Agami, J. Appl. Pharmacol. Sci. 3 (2013) 38.
[3] N. Erk, and F. Onur, Anal. Lett. 29 (1996) 369.
[4] N. Karali, S. Özkirimli, and A. Gürsoy, Il Farmaco 53 (1998) 62.
[5] M. Mahrous, H. Daabees, and Y. Beltagy, Spectr. Lett. 25 (1992) 389.
[6] N. W. Ali, G. Mohammed, and M. Abdelkawy, Br. J. Pharmacol. Res. 3 (2013) 472.
[7] M. Parissi-Poulou, and I. Panderi, J. Liq. Chr. Rel. Tech. 22 (1999) 1055.
[8] T. Wang, and R. Zhu, Chin. J. Pharmacol. Anal. 20 (2000) 392.
[9] S. Cherkaoui, L. Mateus, P. Christen, and J. L. Veuthey, J. Pharmacol. Biomed. Anal. 21 (1999) 165.
[10] Y. S. Chang, Y. R. Ku, K. C. Wen, and L. K. Ho, J. Liq. Chr. Rel. Tech. 23 (2000) 2009.
[11] M. Ionescu, D. Negoiu, and V. Cosofret, Anal. Lett. 16 (1983) 553.
[12] M. R. Ganjali, Z. Memari, B. Larijani, F. Faridbod, S. Riahi, and P. Norouzi, Sens. Lett. 8 (2010) 545.
[13] A. Das, D. H. Ko, C. H. Chen, L. B. Chang, C. S. Lai, F. C. Chu, L. Chow, and R. M. Lin, Sens. Actuators B 205 (2014) 199.
[14] P. Gründler, Chemical sensors: an introduction for scientists and engineers. Editor, Springer Science & Business Media (2007).
[15] L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, Mater. Chem. Phys. 63 (2000) 19
.
[16] Z. Iskierko, M. Sosnowska, P. S. Sharma, T. Benincori, F. D’Souza, I. Kaminska, K. Fronc, and K. Noworyta, Biosens. Bioelectron. 74 (2015) 526.
[17] P. C. Yao, J. L. Chiang, and M. C. Lee, Sol. State Sci. 28 (2014) 47.
[18] I. Lauks, P. Chan, and D. Babic, Sens. Actuators B 4 (1983) 291.
[19] R. Armstrong, M. Todd, and J. Electroanal. Chem. Interfac. Electrochem. 237 (1987) 181.
[20] F. Faridbod, M. R. Ganjali, R. Dinarvand, and P. Norouzi, Afr. J. Biotech. (2007) 6.
[21] S. Riahi, F. Faridbod, and M. R. Ganjali, Sens. Lett. 7 (2009) 42.
[22] M. R. Ganjali, P. Norouzi, F. Faridbod, S. Riahi, J. Ravanshad, J. Tashkhourian, M. Salavati-Niasari, and M. Javaheri, IEEE Sens. J. 7 (2007) 544.
[23] M. R. Ganjali, H. Shams, F. Faridbod, L. Hajiaghababaei, and P. Norouzi, Mater. Sci. Eng. C 29 (2009) 1380
[24] D. A. Neamen, Semiconductor physics and devices: basic principles. Editor, McGraw Hill (2003).
[25] M. Shenhui, L. Xin, L. Yi-Kuen, Z. Anping, Biosens. Bioelectron. 117 (2018) 276.
[26] Y. El-Saharty, F. Metwaly, M. Refaat, and S. El-Khateeb, Talanta 72 (2007) 675.
[27] A. Afkhami, A. Shirzadmehr, and T. Madrakian, Ionics 20 (2014) 1145.
[28] D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of instrumental analysis. Editor, Cengage learning (2017).