Electrochemical Determination of Neonicotinoid Insecticide Clothianidin by Nanomaterial based Disposable Electrode

Authors

Adnan Menderes University, Faculty of Arts and Sciences, Department of Chemistry, 09010 Aydın, Turkey

Abstract

Disposable, selective and low-cost carbon nanotube modified electrodes were fabricated for the electrochemical detection of neonicotinoid insecticide, Clothianidin (CLT). Almost 2 folds’ increase at Clothianidin reduction signal was obtained by using single-walled carbon nanotube modified electrodes (SWCNT-PGE) compared to unmodified electrodes. These nanomaterials modified electrodes developed in this study will enable simple, rapid and inexpensive identification of the neonicotinoid insecticides, Clothianidin and it is hoped that this technique developed by using these nanosensors will be an alternative to the expensive and time consuming chromatographic techniques with its advantages of adapting to the sensor chip technology for the routine analysis of agricultural products.

Keywords


[1] J. E. Casida and G. B. Quistad, J. Pestic. Sci. 29 (2004) 81.
[2] M. Tomizawa and J. E. Casida, Annu. Rev. Pharmacol. Toxicol. 45 (2005) 247.
[3] D. Guziejewski, S. Skrzypek, and W. Ciesielski, Food Anal. Methods, 5 (2012) 373.
[4] Z. Xiao, Y. Yang, Y. Li, X. Fan, and S. Ding, Anal. Chim. Acta 777 (2013) 32.
[5] D. Goulson, J. App. Ecol. 50 (2013) 977.
[6] P. Jeschke, R. Nauen, M. Schindler, and A. Elbert, J. Agric. Food Chem. 59 (2011) 2897.
[7] M. Lefebvre, N. J. Bostanian, Y. Mauffette, and G. Racette, J. Econ. Entomol. 105 (2012) 866.
[8] M. S. Finstrom, Proceeding of the 2017 American Bee Research Conference, 93 (2016) 104.
[9] T. Xu, D.G. Dyer, L. L. McConnell, S. Bondarenko, R. Allen, and O. Heinemann, Environ. Toxicol. Chem. 35 (2016) 311.
[10] E. Watanabe, T. Iwafune, K. Baba, and Y. Kobara, Food Anal. Methods 9 (2015) 245.
[11]
P. Jovanov, V. Guzsvany, M. Franko, S. Lazic, M. Sakac, I. Milovanovic, and N. Nedeljkovic, Food Res. Int. 55 (2014) 11.
[12] K. P. Yanez, J. L. Bernal, M. J. Nozal, and M. T. Martin, J. Bernal, J. Chromatogr. A 1285 (2013) 110.
[13] M. B. Kim, J. S. Park, J. H. Choi, A. M. El-Aty, T. Na, and J. H. Shim, Food Chem., 131 (2012) 1546.
[14] W. Xie, C. Han, Y. Qian, H. Ding, X. Chen, and J. Xi, J. Chromatogr. A, 1218 (2011) 4426.
[15] P. Jovanov, V. Guzsvány, M. Franko, S. Lazić, M. Sakač, B. Šarić, and V. Banjac, Talanta 111 (2013) 125.
[16] N. Lezi, and V. Economou, Electroanalysis 27 (2015) 2313.
[17] V. Guzsvany, Z. Papp, J. Zbiljic, O. Vajdle, and M. Rodic, Molecules 16 (2011) 4451.
[18] G. Dariusz, S. Slawomira, L. Adam, and C. Witold, Collect. Czech Chem. Commun. 76 (2011) 131.
[19] Z. Papp, V. Guzsvány, I. Švancara, and K. Vytřas, Int. J. Electrochem. Sci. 6 (2011) 5161.
[20] M. Brycht, S. Skrzypek, V. Guzsvány, and J. Berenji, Talanta 117 (2013) 242.
[21] M. Brycht, O. Vajdle, J. Zbiljić, Z. Papp, V. Guzsvány, and S. Skrzypek, Int. J. Electrochem. 7 (2012) 10652.
[22] M. Muti, S. Sharma, A. Erdem, and P. Papakonstantinou, Electroanalysis 23 (2011) 272.
[23] M. Muti, A. Erdem, A.E. Karagozler, and M. Soysal, Colloids Surf. B 93 (2012) 116.
[24] A. Erdem, M. Muti, H. Karadeniz, G. Congur, and E. Canavr, Colloids Surf. B 95 (2012) 222.
[25] A. Erdem, M. Muti, F. Mese, and E. Eksin, Colloids Surf. B 114 (2014) 261.
[26] J. N. Miller and J. C. Miller, Statistics and Chemometrics for Analytical Chemistry, 4th ed., Pearson Education, Essex, UK (2000).