Synthesis, Antimicrobial and Electrochemical Studies of Four Substituted Isatin Derivatives at a Glassy Carbon Electrode


Department of Pharmaceutical Chemistry, Post Graduate Centre, Kadur-577548, Karnataka, India


Isatins, derivatives of indole, represent important class of compounds belonging to nitrogen heterocycles. These compounds comprise synthetically vital substrates that are used as precursors for drug synthesis and raw materials for heterocycles etc. Research in this group of compounds has engrossed interest among scientific community in recent and past as Isatins are known to possess immense biological activities. Present work delineates synthesis, characterization, electrochemical and antimicrobial studies of four substituted derivatives of isatin derivatives. The cyclic voltammetric studies of all the analytes showed that four derivatives have better electro catalytic activity towards the analytes at glassy carbon electrode. These synthesized isatin derivatives were screened for their antimicrobial activity against Gram-negative bacteria (Escherichia coli and Staphylococcus aureus) and fungi such as Candida albicans and Penicillin chrysogenum, and found to possess considerable antimicrobial activity suggesting their effectiveness in developing antibiotics and novel drugs.


[1] J. F. Da Silva, S. J. Garden, and A. C. Pinto, J. Braz. Chem. Soc. 12 (2001) 273.
[2] M. Pal, N. K. Sharma, P. Priyanka, and K. Jha, Chem. Inform. 42 (2011) 253.
[3] R. P. Sonawane, and R. R. Tripathi, Int. Lett. Chem. 7 (2013) 30.
[4] A. S. Grewal, Int. J. Pharm. Res. 6 (2014) 1.
[5] S. Chhajed, and M. Padwal, Int. J. Chem. Tech. Res. 2 (2010) 209.
[6] S. Pandeya, D. Sriram, G. Nath, and E. De Clercq, Il Farmaco 54 (1999) 624.
[7] N. E. Rigler, and G. A. Greathouse, Ind. Eng. Chem. 33 (1941) 693.
[8] N. Lashgari, and G. M. Ziarani, ARKIVOC: Online J. Org. Chem. I (2012) 277.
[9] M. Rajopadhye, and D. F. Popp, J. Med. Chem. 31 (1988) 1001.
[10] D. Sriram, T. R. Bal, and P. Yogeeswari, Med. Chem. Res. 14 (2005) 211.
[11] S. Ramachandran, and K. N. K. Raju, Asian J. Res. Chem. 4 (2011) 925.
[12] R. S. Varma, and W. L. Nobles, J. Med. Chem. 10 (1967) 510.
[13] D. Havrylyuk, N. Kovach, B. Zimenkovsky, O. Vasylenko, and R. Lesyk, Arch. Pharm. 344 (2011) 514.
[14] M. Premanathan, S. Radhakrishnan, K. Kulangiappar, G. Singaravelu, V. Thirumalaiarasu, T. Sivakumar, and K. Kathiresan, Indian J. Med. Res. 136 (2012) 822.
[15] K. Joshi, V. Pathak, and S. Jain, Die Pharmazie 35 (1980) 677.
[16] R. Protivinsky, and H. Schönfeld, de Weck AL (eds): Mode of Action. Antibiot Chemother. 17 (1971) 101.
[17] J. Logan, M. Fox, J. Morgan, A. Makohon, and C. Pfau, J. Gen. Virol. 28 (1975) 271.
[18] R. Varma, R. Pandey, and Kumar P. Indian J. Pharm. Sci. 44 (1982) 132.
[19] D. Srilakshmi, S. Swetha, and P. Lakshmi, Ayushdhara 1 (2015) 1.
[20] A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, S. S. Habib, and A. Memic, Int. J. Nanomed. 7 (2012) 6003.
[21] S. Bondock, R. Rabie, H. A. Etman, and A. A. Fadda, Eur. J. Med. Chem. 43 (2008) 2122.
[22] S. K. Kumar, G. P. Mamatha, H. Muralidhara, M. Anantha, S. Yallappa, B. Hungund, and K. Y. Kumar, Adv. Mater. Dev. 2 (2017) 493.
[23] R. Mariammal, K. Ramachandran, B. Renganathan, and D. Sastikumar, Sens. Actuators B Chem. 169 (2012) 199.
[24] S. Benzitouni, M. Zaabat, A. Khial, D. Rechem, A. Benaboud, D. Bouras, A. Mahdjoub, M. Toubane, and R. Coste, Adv. Nanopart. 5 (2016) 140.
[25] J. Manjunatha, B. K. Swamy, R. Deepa, V. Krishna, G. P. Mamatha, U. Chandra, S. S. Shankar, and B. Sherigara, Int. J. Electrochem. Sci. 4 (2009) 662.
[26] S. Chitravathi, B. K. Swamy, G. P. Mamatha, and B. Chandrashekar, J. Mol. Liq. 172 (2012) 130.