Mineralization of Ofloxcacin Antibiotic in Aqueous Medium by Electro-Fenton Process using a Carbon Felt Cathode: Influencing Factors


1 Department of Chemistry, Faculty of Education, Hodeidah University, Hodeida, Yemen

2 Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Av. Ibn Battouta, P.O. Box 1014 Agdal-Rabat, Morocco

3 Laboratory Analytical Chemistry and Bromatology Laboratory, Faculty of Medicine and Pharmacy, Mohamed V University, Rabat, Morocco

4 Laboratory of Composite Materials, Polymers and Environment, Department of chemistry, Faculty of Science, Mohamed V University, Rabat, Morocco


The aim of this work is to study the degradation and mineralization of antibiotic ofloxacin in aqueous medium using the Electro-Fenton method as advanced oxidation technology. In this context, Pt/carbon-felt cell was used to investigate the influence of various parameters including initial pH, different supporting electrolytes, different metal ions as a catalyst and antibiotic concentration over the mineralization rate and instantaneous current efficiency. The chemical oxygen demand (COD) measurements during the electrolysis allowed the evaluation of the kinetic of organic matter decay and the mineralization efficiency reaches 90% COD removal at only 200 mA for 300 min of electrolysis.


[1] G. Linke, H. Crispin, C. Chang-Er, Z. Peng, D. Qianqian, and Y. Ziwei, Sci. Total
Environ. 633 (2018) 1192.
[2] K. Chen, and J. L. Zhou, Chemosphere 95 (2014) 604.
[3] N. Dorival-García, A. Zafra-Gomez, S. Cantarero, A. Navalon, and J. L. Vílchez, Microchem. J. 106 (2013) 323.
[4] R. Wei, F. Ge, S. Huang, M. Chen, and R. Wang, Chemosphere 82, (2011) 1408.
[5] Y. Ma, M. Li, M. Wu, Z. Li, and X. Liu, Sci. Total Environ. 518-519 (2015) 498.
[6] P. Verlicchi, M. Al Aukidy, and E. Zambello, Sci. Total Environ. 429 (2012) 123.
[7] P. A. Segura, M. Francois, C. Gagnon, and S. Sauvé, Environ. Health Perspect. 117 (2009) 675.
[8] D. T Sponza, and P. Koyuncuoglu, Clin. Microbiol. Infect. Dis. 4 (2019) 1.
[9] T. Backhaus, and M. Karlsson, Water Res. 49 (2014) 157.
[10] K. Kümmerer, A. Al-Ahmad, and V. Mersch-Sundermann, Chemosphere 40 (2000) 701.
[11] M. Isidori, M. Lavorgna, A. Nardelli, L. Pascarella, and A. Parrella, Environ. Sci. Technol. 346 (2005) 87.
[12] T. A. Ternes, A. Joss, H. Siegrist, Environ. Sci. Technol. 38 (2004) 392A.
[13] V. R. Urbano, M. S. Peres, M. G. Maniero, J. R. Guimaraes, J. Environ. Manage. 193 (2017) 439.
[14] H. Titouhi, and J. E. Belgaied, J. Environ. Sci. 45 (2016) 84.
[15] C. C. Lin, H.Y. Lin, and L. J. Hsu, Sep. Purif. Technol. 168 (2016) 57.
[16] V. Bhatia, A. K. Ray, and A. Dhir, Sep. Purif. Technol. 161 (2016) 1.
[17] P. Yunqing, F. Jinglan, S. Mengke, and S. Jianhui, Chin. Sci. Bull. 59 (2014) 2618.
[18] L. Zhu, B. Santiago-Schübel, H. Xiao, H. Hollert, and S. Kueppers, Water Res. 102 (2016) 52.
[19] E. Brillas, I. Sirés, and M. A. Oturan, Chem. Rev. 109 (2009) 6570.
[20] M. A. Oturan, J. Appl. Electrochem. 30 (2000) 477.
[21] B. Nasr, G. Abdellatif, P. Cañizares, C. Sáez, J. Lobato, and M. A. Rodrigo, Environ. Sci. Technol. 39 (2005) 7234.
[22] M. Zhou, and J. He, Electrochim. Acta 53 (2007) 1902.
[23] A. Özcan, Y. Şahin, A.S. Koparal, and M.A. Oturan, Appl. Catal. B: Environ. 89 (2009) 620.
[24] K. Cruz-González, O. Torres-López, A. García-León, J. L. Guzmán-Mar, L. H. Reyes, A. Hernández-Ramírez, and J. M. Peralta-Hernández, Chem. Eng. J. 160 (2010) 199.
[25] N. Oturan, J. Wu, H. Zhang, V. K. Sharma, and M. A. Oturan, Appl. Catal. B: Environ 140 (2013) 92.
[26] M.A. Oturan, M.C. Edelahi, N. Oturan, K. El Kacemi, and J.J. Aaron, Appl. Cat. B-Environ. 97 (2010) 82.
[27] M. Sh. Yahya, N. Beqqal, A. Guessous, M. R. Arhoutane, and K. El Kacemi, Cogent Chem. 3 (2017) 1290021.
[28] M. Dios., D. F. Dios, O. Iglesias, M. Pazos, and A. M. Sanroman, Sci. World J. (2014) 1.
[29] M. H. Zhou, Q. Q. Tan, Q. Wang, Y. L. Jiao, N. Oturan, and M. A. Oturan, J. Hazard. Mater. 215 (2012) 287.
[30] M. Sh. Yahya, N. Oturan, K. El Kacemi, M. El Karbane, C. T. Aravindakumar, and M. A. Oturan, Chemosphere 117 (2014) 447.
[31] M. R. Arhoutane, G. Kaichouh, M. Sh Yahya, M. El Karbane, H. Chakchak, and K. El Kacemi, Med. J. Chem. 8 (2019) 308.
[32] L. Jiang, X. Mao, Int. J. Electrochem. Sci. 7 (2012) 4078.
[33] T. U. Un, S. Topal, E. Oduncu, and U. K. Ogutveren, Int. J. Environ. Sci. Dev. 6 (2015) 415.
[34] J. Wang, W. Zhu, S. Yang, W Wang, and Y. Zhou, Appl. Catal. B: Environ. 78 (2008) 30.
[35] A. Özcan, Y. Šahin, A.S. Koparal, and M.A. Oturan, J. Electroanal. Chem. 616 (2008) 71.
[36] H. Golnabi, M. R. Matloob, M. Bahar, and M. Sharifian, Iranian Phys. J. 3 (2009) 24.
[37] L. Zhou, Z. Hu, C. Zhang, Z. Bi, T. Jin, and M. Zhou, Sep. Purif. Technol. 111 (2013) 131.
[38] M. Zhou, Q. Yu, L. Lei, and G. Barton, Sep. Purif. Technol. 57 (2007) 380.
[39] R. F. Dantas, S. Contreras, C. Sans, and S. Esplugas, J. Hazard. Mater. 150 (2008) 790.
[40] E. Isarain-Chávez, C. Arias, P. L. Cabot, F. Centellas, R. M. Rodríguez, J. A. Garrido, and E. Brillas, Appl. Catal. B-Environ. 96 (2010) 361.
[41] N. Masomboon, C. Ratanatamskul. And M. C. Lu, Appl. Catal-A-Gen. 384 (2010) 128.
[42] A. M. Wang, J.H. Qu, J.H. Liu, and J. Ru, Appl. Catal. B. Environ. 84 (2008) 393.
[43] E. Guinea, C. Arias, P. L. Cabot, J. A. Garrido, R. M. Rodríguez, F. Centellas, and E. Brillas, Water Res. 42 (2008) 499.
[44] A. G. Trovó, R. F. P. Nogueira, A. Agüera, C. Sirtori, and A. R. Fernández-Alba, Chemophere 77 (2009) 1292.
[45] J. Pignatello, E. Oliveros, and A. MacKay, Crit. Rev. Env. Sci. Tec. 37 (2006) 273.
[46] M. Pimentel, N. Oturan, M. Dezotti, and M. A. Oturan, Appl. Catal. B: Environ. 83 (2008) 140.
[47] M. Risch, K.A. Stoerzinger, B. Han, T.Z. Regier, D. Peak, S.Y. Sayed, C. Wei, Z. Xu, and Y. Shao-Horn, J. Phys. Chem. C 121 (2017) 17682.
[48] K. Wu, Y. Wang, and I. Zhitomirsky, J. Colloid Interface Sci. 15 (2010) 352.