Development of a Disposable Electrochemical Sensor based on Nanocomposite/Ionic Liquid Assisted Hollow Fiber-Graphite Electrode for Measurement of Lorazepam Using Central Composite Design

Authors

Department of chemistry, Payame Noor University, 19395-4697 Tehran, Iran

Abstract

In this study a new method of preconcentration, separation and efficient measuring of so-called hollow fiber solid / liquid phase microextraction has been introduced for the determination of trace amounts of lorazepam (LRZ) in water samples, urine and hair using differential pulse voltammetry. To this end, a hybrid adsorbent material was used that involved ionic liquid assisted magnetic multi-walled carbon nanotube as the extraction phase. Nanoparticles dispersed in the ionic liquid were placed inside the pores and channels of hollow polypropylene fiber. Then the pencil graphite electrode modified with multi-walled carbon nanoparticles was put into this fiber. This combined electrode was placed in a voltammetry cell and use as a working electrode. The electrochemical behavior of LRZ on the fabricated working electrode was investigated by differential pulse voltammetry (DPV) techniques and the obtained results confirmed its efficiency for sensing of LRZ. The study was approved using the Placktett-Burman design (PBD) for screening and central composite design (CCD) for the optimization of the process parameters. Under optimal conditions, a linear calibration curve was plotted for the concentration of analyte between 0.032 to 64.2 μM with a detection limit (LOD) (S/N=3) and limit of quantification (LOQ) of 0.003 μM and 0.06 μM respectively. The suggested method was successfully applied for screening real samples; domestic water, urine and hair for LRZ

Keywords


[1] C. Page, B. Hoffman, M. Curtis, and M. Walker, Integrated Pharmacology: With Student Consult Access, 3rd Ed., Michael JA Walker, London (2006).
[2] A. S. Lippa, J. Coupet, E. N. Greenblatt, C. A. Klepner, and B. Beer, Pharmacol. Biochem. Behav. 11 (1979) 99.
[3] K. T. Olkkola, and J. Ahonen, Midazolam and other benzodiazepines, Modern anesthetics, Springer, Berlin, Heidelberg (2008).
[4] K. R. Tan, U. Rudolph, and C. Lüscher, Trends Neurosci. 34 (2011) 188.
[5]J. Riss, J. Cloyd, J. Gates, and S. Collins, Acta Neurol. Scand. 118 (2008) 69.
[6] C. M. Kahn, L. Scott, and S. E. Aiello, The Merck veterinary manual, 9th ed., Philadelphia, Pensylvania (2005).
[7] A. Bugey, and C. Staub, J. Pharm. Biomed. Anal. 35 (2004) 555.
[8] E. Bertol, F. Vaiano, M. Borsotti, M. Quercioli, and F. Mari, J. Anal. Toxicol 37 (2013) 659.
[9] V. F. Samanidou, M. N. Uddin, and I. N. Papadoyannis, Bioanalysis 1 (2009) 775.
[10] D. Borrey, E. Meyer, W. Lambert, S. Van Peteghem, C. Van Peteghem, and A. P. DeLeenheer, J. Chromatogr. A 910 (2001) 105.
[11] K. Arnhard, R. Schmid, U. Kobold, and R. Thiele, Anal. Bioanal. Chem. 403 (2012) 755.
[12] P. Adamowicz, and M. Kała, Forensic Sci. Int. 198 (2010) 39.
[13] D. R. Baker, and B. Kasprzyk-Hordern, J. Chromatogr. A 1218 (2011) 1620.
[14] M. Huerta-Fontela, M. T. Galcerán, and F. Ventura, J. Chromatogr. A 1217 (2010) 4212.
[15] S. Esteban, Y. Valcárcel, M. Catalá, and M. G. Castromil, Gac Sanit 26 (2012) 457.
[16] A. Mendoza, M. López de Alda, S. González-Alonso, N. Mastroianni, D. Barceló, and Y. Valcárcel, Chemosphere 95 (2014) 247.
[17] A. Jurado, N. Mastroianni, E. Vàzquez-Su˜né, J. Carrera, I. Tubau, E. Pujades, C. Postigo, M. López de Alda, and D. Barceló, Sci. Total Environ. 424 (2012) 280.
[18] C. Repice, M. Dal Grande, R. Maggi, and R. Pedrazzani, Sci. Total Environ. 27 (2013) 463.
[19] F. T. Peters, Clin. Biochem. 44 (2011) 54.
[20] A. Salomone, E. Gerace, P. Brizio, M. C. Gennaro, and M. Vincenti, J. Pharm Anal. 56 (2011) 582.
[21] H. H. Lee, J. F. Lee, S. Y. Lin, Y. Y. Lin, C. F. Wu, M. T. Wu, and B. H. Chen, Clin. Chim. Acta 420 (2013) 134.
[22] K. Wang, M. Cheng, C. Hsieh, J. Hsu, J. Wu, and C. Lee, Forensic Sci. Int. 224 (2013) 84.
[23] X. P. Lee, T. Kumazawa, J. Sato, Y. Shoji, C. Hasegawa, C. Karibe, T. Arinobu, H. Seno, and K. Sato, Anal. Chim. Acta. 492 (2003) 223.
[24] L. M. de Carvalho, D. Correia, S. C. Garcia, A.V. de Bairros, P. C. d. Nascimento, and D. Bohrer, Forensic Sci. Int. 202 (2010) 75.
[25] K. B. Borges, E. F. Freire, I. Martins, and M. E. P. B. de Siqueira, Talanta 78 (2009) 233.
[26] R. A. Anderson, M. M. Ariffin, P. A. G. Cormack, and E. I. Miller, Forensic Sci. Int.174 (2008) 40.
[27] K. Johansen Reubsaet, H. Ragnar Norli, P. Hemmersbach, and K. E. Rasmussen, J. Pharm. Biomed. Anal. 18 (1998) 667.
[28] H. G. Ugland, M. Krogh, and L. Reubsaet, J. Chromatogr. B 798 (2003) 127.
[29] Z. Es’haghi, A. Nezhadali, S. Bahar, S. Bohlooli, and A. Banaei, J. Chromatogr. B 980 (2015) 55.
[30] Z. Es'haghia, M. Ahmadi-Golsefidi, A. Saify, A. A. Tanha, Z. Rezaeifar, and Z. Alian-Nezhadi, J. Chromatogr. A 1217 (2010) 2768.
[31] X. Huang, L. Chen, D. Yuan, and S. Bi, J. Chromatogr. A 1248 (2012) 67.
[32] S. Wu, A. Sun, F. Zhai,J. Wang, W. Xu, Q. Zhang, and A. Volinsky, Mater. Lett. 65 (2011) 1882.
[33] L. Jiaming, L. Xuana, W. Aihong, H. Li-Xiang, H. E. Hangxia, H. Honghua, L. Longdi, and L. Shaoqin, Spectrochim. Acta A Mol. Biomol. Spectrosc. 65 (2006) 106.
[34] K. M. Sharif, M. M. Rahman, J. Azmir, A. Mohamed, M. H. A. Jahurul, F. Sahena, and I. S. M. Zaidul, J. Food Eng. 124 (2014) 105.
[35] M. Bayat, F. Shemirani, M. Hossein Beyki, and M. Davudabadi Farahani, Desalination Water Treat 56 (2015) 814.
[36] R. Verplaetse, E. Cuypers, and J. Tytgat, J. Chromatogr. A 1249 (2012) 147.
[37] M. D. Bermúdez, A. E. Jiménez, J. Sanes, and F. J, Carrión, Molecules 14 (2009) 2888.
[38] I. I. Papoutsis, S. A. Athanaselis, P. D. Nikolaou, C. M. Pistos, C. A. Spiliopoulou, and C. P. Maravelias, J. Pharm. Biomed. Anal. 52 (2010) 609.
[39] K. B. Borges, E. F. Freire, I. Martins and M. E. P. B. De Siqueira, Talanta 78 (2009) 233.
[40] A. A. Asgharinezhad, H. Ebrahimzadeh, F. Mirbabaei, N. Mollazadeh, and N. Shekari, Anal. Chim. Acta. 844 (2014) 80.