Detection of Clindamycin in Pharmaceutical Products using an Electrochemiluminescence Electrode based on a Composite of Ru(bpy)3²+, Eu2O3 Nanoparticle and Chitosan

Authors

1 Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran

2 Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran

Abstract

In this study, the electrochemiluminescence (ECL) interaction of clindamycin and tris(2,2′-bipyridine)ruthenium(II) (Ru(bpy)32+) was used to develop a sensitive tool for the detection of clindamycin based on modifying a glassy carbon electrode (GCE) with nanoparticles of europium oxide. The experiments showed that in the presence of these inorganic nanoparticles (Eu2O3 NPs) the ECL signal is enhanced. The optimal ECL response of the electrode was found to linearly change with the concentration of clindamycin from 3.0×10-14 to 1.0×10-6 mol L-1 (R2= 0.9909) and a detection limit of as low as 7.4×10-15 mol L-1 (S/N=3) with a relative standard deviation (RSD) of 4.0 % was observed. The method was compared and found to be better than previously reported ones, in terms of sensitivity, and the analysis of the analyte by proposed method was successful in pharmaceutical formulations using HPLC as a reference method.

Keywords


[1] P. Kowalski, L. Konieczna, I Olędzka, A. Plenis, and T. Bączek, Food Anal. Methods 7 (2014) 276.
[2] A. Wong, C. A. Razzino, T. A. Silva, and O. Fatibello-Filho, Sens. Actuators B 231 (2016) 183.
[3] M. E. K. Wahba, N. El-Enany, and F. Belal, Anal. Methods7 (2015) 10445.
[4] X. Shao, X. Xie, and Z. Song, Microchim. Acta. 157 (2007) 159.
[5] H. Sheikhloie, and K. Farhadi, J. Iranian Chem. Res. 3 (2010) 65.
[6] M. Gros, S. Rodriguez-Mozaz, and D. Barcelo, J. Chromatogr. A 1292 (2013) 173.
[7] E. Gracia-Lor, J. V. Sancho and F. Hernandez, J. Chromatogr. A 1218 (2011) 2264.
[8] D. Frank, G. Montskó, I. Juricskay, B. Borsiczky, G. Cseh, B. Kocsis, T. Nagy, Á. K. Nagy, G. L. Kovács and A. Miseta, J. Chemother. 23 (2011) 282.
[9] I. H. I. Habib, M. S. Rizk, and T. R. El-Aryan, Pharm. Chem. J. 44 (2011) 705.
[10] Y. M. Liu, Y. M. Shi, Z. L. Liu, and L. F. Peng, J. Separation Sci. 33 (2010) 1305.
[11] J. Wang, Z. Peng, J. Yang, X .Wang, and N. Yang, Talanta 75 (2008) 817.
[12] W. Miao, Chem. Rev. 108 (2008) 2506.
[13] F. Salehnia, M. Hosseini, and M. R. Ganjali, Anal. Methods 10 (2018) 508.
[14] M. Hamtak, M. Hosseini, L. Fotouhi, and M. Aghazadeh, Anal. Methds 10 (2018) 5723.
[15] A. Karimi, S. W. Husain, M.Hosseini, P. Aberoomand Azar, and M. R. Ganjali, Sens. Actuators B 271 (2018) 90.
[16] L. Hu, and G. Xu, Chem. Soc. Rev. 39 (2010) 3275.
[17] X. Y. Wang, A. Gao, C. C. Lu, X. W. He, and X. B.Yin, Biosens. Bioelectron. 48 (2013) 120.
[18] M. Hamtak, L. Fotouhi, M. Hosseini, and M. R. Ganjali, Anal. Lett. 52 (2019) 633.
[19] E. Sobhanie, F. Faridbod, M. Hosseini, and M. R. Ganjali, Chemistry Select 5 (2020) 5330.
[20] N. Mirzanasiri, M. Hosseini, and H. Rashed, Anal. Bioanal. Electrochem. 10 (2018) 147.
[21] F. Mesgari, S. M. Beigi, F. Salehnia, M. Hosseini, and M. R. Ganjali, Inorg. Chem. Commun. 106 (2019) 240.
[22] M. Hosseini, M. R. Karimi Pur, P. Norouzi, M. R. Moghaddam, F. Faridbod, M. R. Ganjali, and J. Shamsi, Anal. Methods 7 (2015) 1936.
[23] R. Y. Hwang, G. R. Xu, J. Hana, J. Y. Lee, H. N.Choi, and W. Y. Lee, J. Electroanal. Chem. 656 (2011) 258.
[24] X.Tang, D. Zhao, J. He, F. Li, J. Peng, and M. Zhang, A. Chem. 85 (2013) 1711.
[25] M. S.Wu, L. J. He, J. J. Xu, and H. Y.Chen, Anal. Chem. 86 (2014) 4559.
[26] M. R. Pur, M. Hosseini, F. Faridbod, A. S. Dezfuli, and M. R. Ganjali, Anal. Bioanal. Chem. 408 (2016) 7193.
[27] M. R. Karimi Pur, M. Hosseini, F. Faridbod, M. R. Ganjali, and S. Hosseinkhani, Sens. Actuators B 257 (2018) 87.
[28] M. R. Karimi Pur, M. Hosseini, F. Faridbod, and M. R. Ganjali, Microchim. Acta. 184 (2017) 3529.
[29] C. Xiong, H. Wang, Y. Yuan, Y. Chai, and R. Yuan, Talanta 131 (2015) 192.
[30] M. H. Parvin, and M. H. Parvin, Electrochem. Commun.13 (2011) 366.
[31] F. Nemati, R. Zare-Dorabei, M. Hosseini, and M. R. Ganjali, Sens. Actuators B 255 (2018) 2078.
[32] H. O. Othman, F. Salehnia, M. Hosseini, R. Hassan, A. Faizullah, and M. R. Ganjali, Microchem. 157 (2020) 104966.
[33] M. Hassannezhad, M. Hosseini, M. R. Ganjali, and M. Arvand, Anal. Methods 11 (2019) 2064.
[34] F. Nemati, M. Hosseini, R. Zare-Dorabei, F. Salehnia, and M. R. Ganjali, Sens. Actuators B 273 (2018) 25.
[35] Z. Dehghani, J. Mohammadnejad, M. Hosseini, B. Bakhshi, and A. H. Rezayan, Food Chem. 309 (2020) 125690.
[36] F. Salehnia, N. Fakhri, M. Hosseini, and M. R. Ganjali, Application of Graphene Materials in Molecular Diagnostics, Handbook of Graphene Set (2019).
[37] F. Salehnia, M. Hosseini, and M. R. Ganjali, Microchim. Acta. 184 (2017) 2157.
[38] K. Movlaee, M. R. Ganjali, M. Aghazadeh, H. Beitollahi, M. Hosseini, S. Shahabi, and P. Norouzi, Int. J. Electrochem. Sci. 12 (2017) 305.
[39] R. M. Penner, and C. R. Martin, Anal. Chem. 59 (1987) 2625.
[40] F. Mesgari, S. M. Beigi, N. Fakhri, M. Hosseini, M. Aghazadeh, and M. R. Ganjali, Microchem. Acta 157 (2020) 104991.
[41] M. Hassannezhad, M. Hosseini, M. R. Ganjali, and M. Arvand, Chemistry Select 4 (2019) 7616.
[42] N. Fakhri, F. Salehnia, S. Mohammad Beigi, S. Aghabalazadeh, M. Hosseini, and M. R. Ganjali, Microchim. Acta 186 (2019) 385.
[43] Y. S. Borghei, M. Hosseini, M. Khoobi, and M. R. Ganjali, J. Fluorescence 27 (2017) 529.
[44] M. Hosseini, M. Aghazadeh, and M. R. Ganjali, New J. Chem. 41 (2017) 12678.
[45] M. R. Ganjali, P. Norouzi, A. Atrian, F. Faridbod, S. Meghdadi, and M. Giahi, Mater. Sci. Eng. C 29 (2009) 205.
[46] M. R. Ganjali, L. Naji, T. Poursaberi, M. Shamsipur, and S. Haghgoo, Anal. Chim. Acta 475 (2003) 59.
[47] M. R. Ganjali, M. Rahimi, B. Maddah, A. Moghimi, and S. Borhany, Anal. Sci. 20 (2004) 1427.
[48] M. R. Ganjali, Z. Memari, F. Faridbod, R. Dinarvand, and P. Norouzi, Electroanalysis 20 (2008) 2663.
[49] M. R. Ganjali, S. Rasoolipour, M. Rezapour, P. Norouzi, A. Tajarodi, and Y. Hanifehpour, Electroanalysis 17 (2005) 1534.
[50] C. Constantinescu, V. Ion, A. C. Galca, and M. Dinescu, Thin Solid Films 520 (2012) 6393.
[51] K. A. Gschneidner Jr, L. Eyring, Preface, in Handbook on the Physics and Chemistry of Rare Earths. Elsevier (1997).
[52] H. Mohammad Shiri, and A. Ehsani, J. Coll. Interf. Sci. 473 (2016) 126.
[53] C. H. Zeng, K. Zheng, K. L. Lou, X.T. Meng, Z. Q. Yan, Z. N. Ye, R. R. Su, and S. Zhong, Electrochim. Acta 165 (2015) 396.
[54] T. Anh, P. Benalloul, C. Barthou, L. thiKieu Giang, N. Vu, and L. Quoc Minh, J. Nanomater. 2007 (2007) 1.
[55] N. Du, N. Du, H. Zhang, B. Chen, J. Wu, D. Li, and D. Yang, Nanotechnology 18 (2007) 065605.
[56] L. Lu, X. Zhang, Z. Bai, X. Wang, X. Mi, and Q. Liu, Advanced Powder Technol. 17 (2006)181.
[57] S. Lu, J. Zhang, and J. Zhang, J. Nanosci. Nanotechnol. 10 (2010) 2152.
[58] A. S. Dezfuli, M. R. Ganjali, P. Norouzi, and F. Faridbod, J. Mater. Chem. B 3 (2015) 2362.
[59] M. Sedaghat, P. Norouzi, and J. Shamsi, Anal. Bioanal. Electrochem. 6 (2014) 43.
[60] A. W.Xu, Y. Gao, and H. Q. Liu, J. Catalysis. 207 (2002) 151.
[61] P. Paul, T. Duchateau, C. Sänger-van de Griend, E. Adams, and A. Van Schepdael, J. Separat. Sci. 40 (2017) 3535.
[62] Z. Zhang, Y. Hu, H. Zhang, and S. Yao, J. Coll. Interf. Sci. 344 (2010) 158.
[63] M. B. Tehrani, M. Namadchian, S. Fadaye Vatan, and E. Souri, J. Pharma. Sci. 21 (2013) 29.
[64] M. Hadi, and E. Honarmand, Russian J. Electrochem. 53 (2017) 380.
[65] J. K. Leland, and M. J. Powell, J. Electrochem. Soc. 137 (1990) 3127.