A Promising Enhanced Polymer Modified Voltammetric Sensor for the Quantification of Catechol and Phloroglucinol


Department of Chemistry, FMKMC College, Madikeri, Mangalore University Constituent College, Karnataka, India


In the present paper, poly(Tyrosine) modified graphene paste electrode (PTMGPE) was fabricated by utilizing an electropolymerization technique. Deposition of polymer film at bare graphene paste electrode (BGPE) was characterized by field emission scanning electron microscopy (FE-SEM). The PTMGPE was applied for Voltammetric detection of catechol (CC) and its quantification in phosphate buffer solutions of pH 7.0 (PBS). The detected cyclic voltammetric oxidation current of CC and phloroglucinol (PG) on PTMGPE is nearly 4 times higher with controlled over potential as a contrast to BGPE. This result shows the electrocatalytic effect of the poly (Tyrosine) layer. The differential pulse voltammetry (DPV) results show that CC and PG can be detected instantaneously using PTMGPE with peak separation of 0.300 V between CC and PG. Also, DPV showed two linear current responses in the concentration range of 2×10-6 to 1×10-5 M and 1.5×10-5 to 5×10-5 M with a coefficients of correlation 0.9951 and 0.9976 respectively. The detection limit (DL) and quantization limit (QL) were found to be 3.04×10-7 and 10×10-7 mol L-1 respectively. Further, we have also studied real sample analysis in tap water using proposed PTMGPE in the form of recovery studies and the achieved outcomes are found to be excellent agreement with the previous results. The PTMGPE shows exceptional selectivity, good sensitivity, and steadiness, making it as an attractive and alternative sensor for concurrent determination of CC and PG.


[1] H. Lin, T. Gan, and K. Wu, Food Chem. 113 (2009) 701.
[2] N. Broli, L. Vallja, A. Shehu, and M. Vasjari, J. Food Process. Preserv. (2018) e13838. DOI: 10.1111/jfpp.13838.
[3] L. A. Alshahrani, L. Miao, Y. Zhang, S. Cheng, P. Sathishkumar, and B. Saravanakumar, J. Nan, F.L. Gu, Sensors 19 (2019) 1.
[4] P. Nagaraja, R. A. Vasantha, and K. R. Sunitha, Talanta 55 (2001) 1039.
[5] G. Marrubini, E. Calleri, T. Coccini, A. F. Castoldi, and L. Manzo, Chromatographia 62 (2005) 25.
[6] M. F. Pistonesi, M. S. Di Nezio, M. E. Centurión, M. E. Palomeque, A. G. Lista, and B. S. Fernández Band, Talanta 69 (2006) 1265.
[7] H. Yin, Q. Zhang, Y. Zhou, Q. Ma, L. Zhu, T. Liu, and S. Ai, Electrochim. Acta 56 (2011) 2748.
[8] J. Li, C. Liu, and C. Cheng, Electrochim. Acta 56 (2011) 2712.
[9] W. Si, W. Lei, Y. Zhang, M. Xia, F. Wang, and Q. Hao, Electrochim. Acta 85 (2012) 295.
[10] Y. Zhang, R. Sun, B. Luo, and L. Wang, Electrochim. Acta 156 (2015) 228.
[11] F. Hu, S. Chen, C. Wang, R. Yuan, D. Yuan, and C. Wang, Anal. Chim. Acta 724 (2012) 40.
[12] Y. Jiang, L. Jia, S. Yu, and C. Wang, J. Mater. Chem. A 2 (2014) 6656.
[13] H. Zhang, Y. Huang, S. Hu, Q. Huang, C. Wei, W. Zhang, W. Yang, P. Dong, and A. Hao, Electrochim. Acta 176 (2015) 28.
[14] Y. Liu, H. Liao, Y. Zhou, Y. Du, C. Wei, J. Zhao, S. Sun, J. Loo, and Z. Xu, Electrochim. Acta 180 (2015) 1059.
[15] X. Wang, and Y. Fan, J. Appl. Electrochem. 39 (2009) 1451.
[16] Y. P. Ding, and Q. Wu, Chin, J. Appl. Chem. 15(1998) 95.
[17] O. P. Sharma, T. K. Bhat, and B. Singh, J. Chromatogr. A 822 (1998) 167.
[18] A. K. Misra, S. K. Agarwal, and R. P. S. Rajput, Ind. J. Chem. Technol. 5 (1998) 383.
[19] C. J. Widen, H. Pyysalo, and P. Salovaara, J. Chromatogr. 188 (1980) 213.
[20] C. Lartigue-Mattei, C. Lauro-Marty, and M. Bastide, J. Chromatogr. B 617 (1993) 140.
[21] Y. Quan, Z. Xue, H. Shi, X. Zhou, J. Du, X. Liu, and X. Lu, Analyst 137 (2012) 944.
[22] J. Li, J. Xia, F. Zhang, Z. Wang, and Q. Liu, Talanta 181 (2018) 80.
[23] H. Wang, Q. Hu, Y. Meng, Z. Jin, Z. Fang, Q. Fu, W. Gao, L. Xu, Y. Song, and F. Lu, J. Hazard. Mater. 353 (2018) 151.
[24] P. Nagaraja, R. A. Vasantha, and K. R. Sunitha, Talanta 55 (2001) 1039.
[25] M. F. Pistonesi, M. S. Di Nezio, M. E. Centurion, M. E. Palomeque, A. G. Lista, and B. S. Fernandez Band, Talanta 69 (2006) 1265.
[26] J. G. Manjunatha, Chem. Data Coll. 25 (2020) 1.
[27] C. Raril, and J. G. Manjunatha, J. Anal. Sci. Technol. 11 (2020) 1.
[28] J. G. Manjunatha, Sens. Biosensing Res. 16 (2017) 79.
[29] N. Hareesha, and J. G. Manjunatha, J. Iran. Chem. Soc. (2020) 1.
[30] T. Girish, J. G. Manjunatha, C. Raril and N. Hareesha, Chemistry Select 4 (2019) 2168.
[31] N. Hareesha and J. G. Manjunatha, Mater. Res. Innov. (2019) 1.
[32] C. Raril, and J. G. Manjunatha, Microchem. J. 154 (2019) 104575.
[33] P. S. Ganesh, and B. E. K. Swamy, J. Electroanal. Chem. 756 (2015) 193.
[34] J. G. Manjunatha, Heliyon 4 (2018) 1.
[35] F. Hu, S. Chen, C. Wang, R. Yuan, D. Yuan, and C. Wang, Anal. Chim. Acta 724 (2012) 40.
[36] Y. Umasankar, A. P. Periasamy, and S. M. Chen, Anal. Biochem. 411 (2011) 71.
[37] L. A. Alshahrani, X. Li, H. Luo, L. Yang, M. Wang, S. Yan, P. Liu, Y. Yang, and Q. Li, Sensors 14 (2014) 22274.
[38] J. Dong, X. Qu, L. Wang, C. Zhao, and J. Xu, Electroanalysis 20 (2008) 198.
[39] P. S. Ganesh, and B. E. K. Swamy, Anal. Bioanal. Electrochem. 8 (2016) 615.
[40] A. A Kumar, B. E. K. Swamy, P. S. Ganesh, T. Shobha, G. Rani, and V. Reddy, J. Electroanal. Chem. 799 (2017)505.
[41] J. G. Manjunatha, Open Chem. Eng. J. 13 (2019) 81.
[42] P. S. Ganesh, B. E. K. Swamy and K. V. Harish, Anal. Bioanal. Electrochem. 9 (2017) 74.
[43] A. J. Saleh Ahammad, T. Akter, A. A. Mamun, T. Islam, M. Hasan, M. A. Mamun, S. Faraezi, F. Z. Monira, and J. K. Saha, J. Electrochem. Soc. 165 (2018) B390.
[44] J. Zhu, R. Fan, Y. Wang, Z. Lv, Y. Han, J. Peng, X. Zheng, and R. Lin, J. Braz. Chem. Soc. 31 (2020) 25.