Berberis Aristata: A Highly Efficient and Thermally Stable Green Corrosion Inhibitor for Mild Steel in Acidic Medium

Authors

1 Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal

2 Bhaktapur Multiple Campus, Tribhuvan University, Bhaktapur, Nepal

3 Trichandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal

Abstract

Plant extracts are extensively researched as a source of green corrosion inhibitors. Herein, we report on a highly efficient and thermally stable corrosion inhibitor from the stem extract of high-altitude shrub Berberis aristata. The corrosion inhibition efficiency (IE) of the extract was tested in 1.0 M H2SO4 for the corrosion protection of mild steel (MS) by using gravimetric and electrochemical measurements. It displayed a remarkable IE of 90% at 200 ppm and reached to 98.18% at high concentration (1000 ppm) at room temperature. The thermal stability of the adsorbed extract was uncommon among the recently reported plant extracts, giving an IE of 80% at 338K. Besides, the adsorption of the extract was extremely efficient, producing an IE of 90% in 15 min. The thermodynamic parameters (ΔG and Ea) showed a chemisorption dominated behavior of the extract. Electrochemical measurements indicated a mixed type of inhibitor, and the extract suppressed the corrosion rate by blocking the active surface of the MS.

Keywords


[1] E. E. Oguzie, Y. Li, and F. H. Wang, Electrochimica Acta 52 (2007) 6988.
[2] M. Murmu, S. K. Saha, N. C. Murmu, and P. Banerjee, Corros. Sci. 146 (2019) 134.
[3] M. A. Hegazy, A. S. El-Tabei, A. H. Bedair, and M. A. Sadeq, RSC Adv. 5 (2015) 64633.
[4] A. Ostovari, S. M. Hoseinieh, M. Peikari, S. R. Shadizadeh, and S. J. Hashemi, Corros. Sci. 51 (2009) 1935.
[5] A. P. Yadav, F. Suzuki, A. Nishikata, and T. Tsuru, Electrochim. Acta 49 (2004) 2725.
[6] M. Dahmani, A. Et-Touhami, S. S. Al-Deyab, B. Hammouti, and A. Bouyanzer, Int. J. Electrochem. Sci. 5 (2010) 1060.
[7] P. Mourya, S. Banerjee, and M. M. Singh, Corros. Sci. 85 (2014) 352.
[8] A.Y. El-Etre, Mater. Chem. Phys. 108 (2008) 278.
[9] Y. Qiang, S. Zhang, B. Tan, and S. Chen, Corros. Sci. 133 (2018) 6.
[10] H. Cang, Z. Fei, J. Shao, W. Shi, and Q. Xu, Int. J. Electrochem. Sci. 8 (2013) 720.
[11] A.Y. El-Etre, J. Colloid Interface Sci. 314 (2007) 578.
[12] G. Choudhary, A. Sharma, R. K. Bangar, and A. Sharma, IJIRAE. 2 (2015) 112.
[13] N. Soltani, N. Tavakkoli, M. K. Kashani, and A. Mosavizadeh, Journal of Industrial and Engineering Chemistry 20 (2014) 3217.
[14] P. S. Desai, Eur. J. Pharm. Med. Res. 2 (2015) 470.
[15] N. A. Odewunmi, S. A. Umoren, Z. M. Gasem, S. A. Ganiyu, and Q. Muhammad, J. Taiwan Inst. Chem. Eng. 51 (2015) 177.
[16] S. A. Umoren, I. B. Obot, A. U. Israel, P. O. Asuquo, M. M. Solomon, U. M. Eduok, and A. P. Udoh, J. Ind. Eng. Chem. 20 (2014) 3612.
[17] N. A. Odewunmi, S. A. Umoren, and Z. M. Gasem, J. Environ. Chem. Eng. 3 (2015) 286.
[18] A. S. Fouda, G. Y. Elewady, D. Shalabi, and S. Habouba, Int. J. Innov. Res. Sci. Eng. Technol. 3 (2014) 11210.
[19] P. Muthukrishnan, B. Jeyaprabha, and P. Prakash, Int. J. Ind. Chem. 5 (2014) 1.
[20] A. Hamdy, and N. S. El-Gendy, Egypt. J. Pet. 22 (2013) 17.
[21] L. Bammou, M. Belkhaouda, R. Salghi, O. Benali, A. Zarrouk, H. Zarrok, and B. Hammouti, J. Assoc. Arab Univ. Basic Appl. Sci. 16 (2014) 83.
[22] A. A. Khadom, A. N. Abd, and N. Arif, South Afr. J. Chem. Eng. 25 (2018) 13.
[23] N. I. Kairi, and J. Kassim, Int. J. Electrochem. Sci. 8 (2013) 7138.
[24] S. B. Ulaeto, U. J. Ekpe, M. A. Chidiebere, and E. E. Oguzie, Int. J. Mater. Chem. 2 (2012) 158.
[25] A. Singh, V. K. Singh, and M. A. Quraishi, Int. J. Corr. 2010 (2010)
[26] R. Karthik, P. Muthukrishnan, A. Elangovan, and B. Jeyaprabha, Adv. Civil Eng. Mater. 3 (2014) 413.
[27] A. Aytac, U. Ozmen, and M. Kabasakaloglu, Mater. Chem. Phys. 89 (2005) 176.
[28] P. R. Shrestha, H. B. Oli, B. Thapa, Y. Chaudhary, D. K. Gupta, A. K. Das, K. B. Nakarmi, S. Singh, N. Karki, and A. P. Yadav, Eng. J. 23 (2019) 205.
[29] B. Thapa, D. K. Gupta, and A. P. Yadav, J. Nepal Chem. Soc. 40 (2019) 25.
[30] N. Karki, Y. Chaudhary, and A. P. Yadav, J. Nepal Chem. Soc. 39 (2018) 76.
[31] P. C. Lama, Y. Chaudhary, N. Karki, and A. P. Yadav, J. Nepal Chem. Soc. 34 (2016) 120.
[32] R. Lama, A. K. Das, B. Yadav, Y. Chaudhary, P. C. Lama, S. L. Shrestha, D. K. Gupta, N. Karki, and A. P. Yadav, J. Nepal Chem. Soc. 38 (2018) 48.
[33] Y. Chaudhary, N. Karki, and A. P. Yadav, J. Nepal Chem Soc. 35 (2016) 139.
[34] Y. Li, P. Zhao, Q. Liang, and B. Hou, Appl. Surf. Sci. 252 (2005) 1245.
[35] L. Na, G. Hui, Z. Peng, Z. Xin, Z. Lihua, and A. Singh, Int. J. Electrochem. Sci. 14 (2019) 1830.
[36] N. Karki.,S. Neupane, Y. Choudhary, U. Singh, and A. P. Yadav, Surf. Interfaces. (2020). https://www.journals.elsevier.com/surfaces-and-interfaces, in press.
[37] R. Thusa, and S. Mulmi, Nepal J. Biotechnol. 5 (2017) 5.
[38] V. Chander, J. S. Aswal, R. Dobhal, and D. P. Uniyal, The Journal of Phytopharmacology 6 (2017) 53.
[39] P. Taylor, V. Bajpai, A. Singh, K. R. Arya, M. Srivastava, and B. Kumar, Food Additives & Contaminants: Part A 32 (2015) 37.
[40] W. Li, X. Zhao, F. Liu, and B. Hou, Corros. Sci. 50 (2008) 3261.
[41] C. B. Verma, and M. A. Quraishi, Electrochem. Surface Anal. 3 (2014) 14601.
[42] F. Bentiss, M. Bouanis, B. Mernari, M. Traisnel, H. Vezin, and M. Lagrene, Applied Surface Sci. 253 (2007) 3696.
[43] V. Sivakumar, K. Velumani, and S. Rameshkumar, Mate. Res. 21 (2018) 1.
[44] R. Sadeghi, M. Amirnasr, S. Meghdadi, and M. Talebian, Corros. Sci. 151 (2019) 190.