Electrochemical Approach for Determination of Tertahydrozoline HCl Using Gold nanoparticles Electrode


1 Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Tanta, El Geish St., Tanta, El gharbeya, Egypt

2 National Organization for Drug Control and Research (NODCAR), 6 Abu Hazem Street, Pyramids Ave, P.O. 29, Cairo, Egypt


The electrochemical behavior of tetrahydrozoline (THZ) was explored by cyclic voltammetry and differential pulse voltammetry. A well-defined peak at 915 mV using gold nanomodified electrode (AuNPts/CP) in presence of sodium dodecyl sulphate (SDS) was detected. Different buffers, pH and scan rates on oxidation peak current were studied. Linear calibration curve was achieved in the range of 1.99×10−5 to 7.79×10-5 M with a limit of detection (LOD) 5.54×10-6 M and limit of quantification (LOQ) 1.69×10−5 M, respectively.
The suggested method was successfully utilized to the eye drops dosage form and urine sample with percentage recovery, 98.86%±0.77, and 101.13±0.62, respectively.


[1] J. E. F. Reynolds. Martindale, the Extra Pharmacopoeia, 30th Edition, Pharmaceutical Press, London (1993).
[2] British Pharmacopeia, London, UK (2010).
[3] United States Pharmacopeia, National Formulary 26, Rockville, MD (2011).
[4] F. Al-Rimawi, W. Zareer, S. Rabie, and M. Quod, J. Pharma. Anal. 2 (2012) 67.
[5] G. Andermann, and A. Richard, J. Chromatogr. A 298 (1984) 189.
[6] G. Puglisi, S. Sciuto, and R. Chillemi, J. Chromatogr. A 369 (1986) 165.
[7] P. Rojsitthisak, W. Wichitnithad, and O. Pipitharom, J. Pharm. Sci. Technol. 59 (2005) 332.
[8] T. G. Altuntas, F. Korkmaz, and D. Nebioglu, Pharmazie 55 (2000) 49.
[9] J. Bauer, and S. Krogh, J. Pharm. Sci. 72 (2006) 1347.
[10] M. S. Ali, M. Ghori, and A. Saeed, J. Chromatogr. Sci. 40 (2002) 429.
[11] B. Stanisz, Kinet. Catal. Lett. 74 (2004) 135.
[12] M. Gumustas, U. Alshana, N. Ertas, N. G. Goger, S. A. Ozkan, and B. Uslu, J. Pharm. Biomed. Anal. 124 (2016) 390.
[13] J. Peat, and U. Garg, Method. Mol. Biol. (Clifton, N. J.) 603 (2010) 501.
[14] G. G. Mohamed, M. S. Rizk, and E. Y. Z. Frag, Iran J. Pharm. Res. 14 (2015) 701.
[15] F. Sayın, and S. Kır, J. Pharm. Biomed. Anal. 25 (2001) 153.
[16] S. A. Özkan, B. Uslu, and P. Zuman, Anal. Chim. Acta 457 (2002) 265.
[17] B. J. Sanghavi, and A. K. Srivastava, Electrochim. Acta 56 (2011) 4188.
[18] H. M. Ahmed, M. A. Mohamed, and W. M. Salem, Anal. Methods 7 (2015) 581.
[19] N. F. Atta, A. Galal, A. A. Wassel, and A. H. Ibrahim, Int. J. Electrochem. Sci. 7 (2012) 10501.
[20] H. T. S. Britton, and R. A. Robinson, J. Chem. Soc. (Resumed) (1931).
[21] A. K. Attia, M. M. Abd-Elmoety, A. M. Badawy, A. E. Abd Elaleemand, and S. G. Abd- Elhamid , Anal. Bioanal. Chem 1 (2014) 128.
[22] N. F. Atta, A. Galal, and S. M. Azab, Int. J. Electrochem. Sci. 6 (2011) 5082.
[23] I. Streeter, G. G. Wildgoose, L. Shao, and R. G. Compton, Sens. Actuators B 133 (2008) 462.
[24] N. F. Atta, S. A. Darwish, S. E. Khalil, and A. Galal, Talanta 72 (2007) 1438.
[25] F. Scholz, Books on Fundamental Electrochemistry and Electroanalytical Techniques, Electro. Anal. Methods, Springer (2010) 343.
[26] A. O. B. P. Industry, ABPI Compendium of Data Sheets and Summaries of Product Characteristics: With The Code of Practice for the Pharmaceutical Industry. 1999-2000, Datapharm Publications Limited (1999).
[27] J. F. Rusling, Coll. Surfaces A 123 (1997) 81.
[28] B. Peterson, and C. J. Marzzacco, The Effect of Hydrocarbon Chain Length on the Critical Micelle Concentration of Cationic Surfactants: An Undergraduate Physical Chemistry Experiment (2007).
[29] D. Skoog, D. West, and F. Holler, Fundamentals of Analytical Chemistry Saunders College, Philadelphia, Estados Unidos (1996).
[30] E. Laviron, and J. Electro. Anal. Chemi. Inter. Electro. 101 (1979) 19.
[31] IHT Guideline, Validation of analytical procedures: text and methodology Q2 (R1), International Conference on Harmonization, Geneva, Switzerland (2005).
[32] R. Caulcutt, and R. Boddy, Statistics for analytical chemists, Chapman & Hall (1983).